
Causality Arguments
[seventh draft]∗

Edgar Daylight†

June 15, 2022

d(n) = if a →|n then a else d(n+ 1)

And a →|n means expression a converges in ≤ n steps

Observation: d(0) converges if and only if a converges

I recently came to the conclusion that the “Observation” in this snippet — as
presented by Felice Cardone and myself in a slightly more involved form at a
PROGRAMme workshop in June 2019 — hinges upon a conflation of two accounts:

1. a dynamic (step-by-step) analysis of computability

2. a static understanding of computability

Cardone and I believed that the “if and only if” observation follows mathemat-
ically from the rest of the snippet without reasoning beyond every conceivable
finite bound; that is, without reasoning at infinity. Examining computability
solely in terms of (increasing) finite bounds is akin to 1., while reasoning at
infinity is akin to 2. Since I have always wanted to detect a conflation in my
own work, after having done so [5, 7] in other sources, I shall eagerly discuss it
in the present chapter.

1 Terminology
Cardone and I eschewed actual infinities, i.e., we were not actualists. Rather,
we were potentialists. Moreover, one of us was a liberal potentialist and the
other was a strict potentialist. (Or so I shall assume in the present exposition.
∗This draft chapter with a working title will, after revisions, belong to the book What is

a computer program? New perspectives, edited by PROGRAMme (i.e., by Liesbeth De Mol,
Tomas Petricek, and the rest of the PROGRAMme community).
†The author, also known as Karel Van Oudheusden, was financed by SFB 1187 “Medien

der Kooperation” (Siegen University) and by ANR-17- CE38-003-01 “PROGRAMme” (Lille
University).

1

In reality, neither Cardone nor I were consistently championing one specific
philosophical position.) Abiding by an analysis of Øystein Linnebo and Stewart
Shapiro pertaining to first-order logic, a liberal potentialist never takes exception
to the Law of the Excluded Middle, meaning that his logic of potential infinity
is classical logic [16]. The strict potentialist, in contrast, does expect every truth
to be “made true” at some stage (e.g., of the computation at hand). Universal
quantification over all natural numbers with classical logic presupposes actual
infinity for the strict potentialist, but not for the liberal potentialist [16, p. 184].

These stipulations come from Linnebo & Shapiro’s recent analysis in which
they conceptually connect the intellectual positions of Aristotle and Plato with,
respectively, dynamic terminology and procedures (on the one hand) and static,
mathematical truths (on the other hand).1 Extrapolating to developments in
computer science, an operational semantics and a denotational semantics ar-
guably belong to, respectively, account 1. and account 2. Likewise, an inten-
sionalist perspective and an extensionalist vantage point typically comply with,
respectively, the first and the second account. Yet, the weasel words “arguably”
and “typically” in the previous sentences (and in the following paragraphs) in-
dicate my reluctance to proclaim any definite mastery of the concepts at hand.2
Although the various dichotomies mentioned in this chapter overlap each other,
they are not per se identical to each other.3

Finally, I also distinguish between causal and abstract, since this ontological
distinction prevails in the philosophical literature on Turing machines. (The
Appendix provides key examples.) The word “causal” fits in a stage-by-stage
account of a process (cf. 1.), while the word “abstract” typically belongs in a
Platonic exposition (cf. 2.). Pivoting on this dualism, two separate realms can
now be entertained:

A. The territory of causal computations of the computer scientist —
in which, at best, potentially-infinitely long computations are per-
mitted. The computer scientist reasons operationally about build-
able machinery that can be extended whenever required by an ex-
ternal agent.
B. The non-causal map of the computability theorist — in which
completed infinities are welcomed. The theorist examines computa-
tions with abstract objects in a Platonic realm of number-theoretic
functions.

The A-B divide serves a heuristic role: some historical players fit into this
scheme and others less so. To illustrate this point, I briefly sketch a contrast
between Martin Davis’s 1958 book on computability [4] and the 1993 approach
of Robert Constable and Scott Smith [1]. Davis took “computations” to be
syntactic and he examined them with abstract objects. Constable & Smith,

1I will follow their stipulations strictly, meaning that (say) infinitary logics and paraconis-
tent logics lie outside the scope of the present article.

2It is, for example, perfectly possible to reason Platonically (i.e., statically, so to speak)
about an operational semantics.

3I thank Julian Rohrhuber for conveying this insight to me.

2

however, took a computation itself to be abstract, i.e., they examined compu-
tations as abstract objects.4 Placing Davis in realm B is a bit more natural
than placing Constable & Smith in that same realm, although all three authors
favored an extensionalist narrative (cf. realm B). Moreover, positioning Davis
in realm B would need further explication, because Davis also reasoned, albeit
informally, inside realm A. Conceptual complications abound.

The divide between realms A and B can be recast as a difference between
engineering and pure mathematics.5 The words “causal computation,” used to
describe realm A, can be directly or indirectly associated with material devices.
In this regard, I mention Carl Petri who took the standard view on Turing
machines to be in accord with an outdated Newtonian understanding of the
world; that is, he placed Martin Davis’s 1958 book inside realm B. Petri took his
engineering version of “Turing machines” to belong to realm A and in accordance
with modern physics [19]. The tape of his Turing machinery was potentially
infinitely long, and a careful reading of his work reveals that he eschewed number
theoretic functions, undecidability claims, and the like.

2 Historical Reflections
The emerging narrative in my recent writings is, that, several computer sci-
entists have a tendency to conflate the territory of causal computations with
the non-causal map of the theorist, wanting to have the best of both worlds:
buildable Turing machines subject to undecidability results from pure mathe-
matics.6 This is a category mistake of the first order, as in my reading Carl
Petri [19] and Paul Henry [13] have pointed out before. For example, the notion
of undecidability pertaining to digital machinery is only a coherent notion in
the formal, non-causal setting of actual infinity, not when reasoning causally
with potential infinity. Causal Turing machines — that is, buildable Turing
machines — belong to realm A, which is separated from realm B of mathe-
matical Turing machines and pure mathematics. Only the latter, mathematical
category contains undecidable problems. These thoughts are crisply formulated
by Henry:

The machines we have considered here, the combination of the Eu-
clidean straightedge and compasses, Descartes’ machine and the Tur-
ing machines, have all of them had something to do with the foun-
dations of mathematics. I have insisted upon the fact that those
machines have had a theoretical function and that there was no
need to materially construct them for them to be operational from
that point of view. Furthermore, I said that in reality they cannot

4Which is presumably the standard approach in denotational semantics. This reflection,
along with others, come from personal correspondence with Felice Cardone.

5Or so I shall pretend in this article. (I remain sympathetic to the idea that actual infinities,
just like imaginary numbers, have a key role to play in engineering.)

6The present paragraph borrows largely from one of my articles (currently under peer
review).

3

be constructed. Now, I can add that it is precisely as “machines
impossible to materially construct” that they give rise to impossible
problems. [13, p. 121, original quotes, my emphasis]

In contrast to Petri and Henry, many computer scientists do not consistently
distinguish between (say) Petri’s causal Turing machines and Davis’s Platonic
Turing machines. Only the latter allow for extensionality, which is, so I shall
maintain, a prerequisite for deriving an impossibility result. To be more precise,
these computer scientists actually believe that their “potentially infinite” Turing
machines suffice in Davis’s number-theoretic setting. I present various examples
and clarifications below.

At the outset of any discussion pertaining to Turing computability, I assume
all parties agree that any Turing machine M must be able to accept, as input, a
suitable encoding of any natural number. Hence, M ’s input string can be arbi-
trary long. Many computer scientists in realm A will insist that some external
agent can always extend M ’s tape when required,7 thereby apparently avoiding
the need of an infinitely long tape. The theorist in realm B will, in adherence
to recursive function theory, stress that the notion of an ‘external agent’ is for-
eign to any formal definition of a Turing machine. An infinitely long tape is
a conditio sine qua non for the computability theorist to get the mathematics
right.

At this point the computer-science critic might insist that in standard presen-
tations of Turing machines, the machine’s tape is assumed to be only potentially
infinitely long. At first glance, this claim seems to be persuasive, as also the
following words from Linnebo & Shapiro seem to indicate:

The notion of potential infinity is still with us, perhaps in a more
subtle form. It is now a commonly held view in linguistics that
languages are infinite. Noam Chomsky, for example, once wrote
that a grammar projects from a finite corpus to a “set (presumably
infinite) of grammatical sentences” (p. 15). It is, we think, more
natural to think of a language as potentially infinite. For another
example, one of us asked a teacher about the infinite tape of a Turing
machine. He was told that we do not have to think of the tape as
(actually) infinite. It is enough to live near a tape factory. [16, p. 187]

I shall return to Linnebo & Shapiro’s “tape factory” towards the end of this
chapter. At second glance, it should be noted that the textbooks of Martin
Davis [4], Stephen Kleene [15], John Hopcroft and Jeffrey Ullman [14], Marvin
Minsky [17], and David Harel [12] all explicitly refer to an actual infinity. For
example, Kleene wrote:

7Petri only agreed partially with this reasoning: once the tape becomes too long, one is
required to chop the Turing machine into two smaller machines that communicate with each
other asynchronously across a network. Furthermore, it is not possible to peruse the global
state of the computer network, there is no notion of global time and the like. Newtonian
physics is substituted by an Einsteinian Weltanschauung. Hence, reasoning extensionally
about the entire network in some Laplacian framework makes no sense either.

4

To allow for unlimited storage of such information, we consider as
separate the machine proper and a peripheral storage facility, which
we will take to be an infinite “tape”. [15, p. 233]

While potential infinity seems to suffice constructively, the “tape” has to be
infinitely long nonetheless. For else Kleene’s impossibility proof cannot get off
the ground, a proof which is by contradiction and extensional [15, p. 245-246].
Similar observations hold for, say, Davis (1958) and Constable & Smith (1993).
In sum: actual infinity and classical logic are salient in these expositions.

The critic continues, however, by remarking that David Hilbert in the 1920s
only accepted potential infinities in order to solve the Entscheidungsproblem.
Alan Turing in 1936 was thus not allowed to exploit actual infinity. By impli-
cation, the critic insists, the tape of a Turing machine is not infinitely long,
only potentially so. I briefly respond as follows: Turing showed that, even if
one resorts to Hilbert’s Platonic realism, even then the Entscheidungsproblem is
unsolvable. So it remains unsolvable inside Hilbert’s finitistic Program as well.8
Turing’s overall argument was like Georg Cantor’s in that both required an ac-
tual infinity.9 I also refer to Guido Gherardi’s “Alan Turing and the Foundations
of Computable Analysis” [11, p. 397, 407], in which he not only attributes an
infinite tape to Turing’s 1936 exposition, he also shows how Turing explicitly
relied on the law of the excluded middle (classical logic) in a 1937 correction to
his 1936 article [24, 25].

The critic persists one last time, by mentioning the writings of Wittgen-
steinian scholar Juliet Floyd [8, 9]. According to Floyd, the critic remarks,
Turing’s 1936 reasoning was non-extensional. Specifically, Floyd takes Turing’s
1936 diagonal argument to be constructive in nature, akin to Wittgenstein’s
1947 eloquent exposition of what a diagonal argument came to mean to him:

Let N = F (k, n) be the form of the law for the development of
decimal fractions.

N is the nth decimal place of the kth development.

The diagonal law then is: F ′(n) := F (n, n)

To prove that F ′(n) cannot be one of the rules F (k, n), assume it is
the 100th.

Then the formation rule of F ’(1) runs F (1, 1), of F ’(2) runs F (2, 2)
. . . etc.

But the rule for the formation of the 100th place of F ’(n) will run
F (100, 100); that is, it tells us only that the hundredth place is
supposed to be equal to itself, and so for n = 100 it is not a rule.

8I thank Erhard Schüttpelz for sharing this key insight with me in private correspondence
in the spring of 2021.

9To recapitulate: how could Turing prove the impossibility of the Entscheidungsprob-
lem by staying inside Hilbert’s Program? He couldn’t. He had to step out of it and
show that even then the Entscheidungsproblem is unsolvable. For broader coverage, see
both Alexander Zenkin’s 2004 article [27] and a set-theoretical rebuttal of that article:
https://www.youtube.com/watch?v=qhZgABFnd0s

5

The rule of the game runs “Do the same as . . . ” — and in the special
case it becomes “Do the same as you are doing”.10

My response consists of three observations. First, Floyd’s writings are illuminat-
ing: they allowed me to grasp details in Turing’s 1936 paper for the first time.
Second, I agree with Floyd and most specialists that Wittgenstein was not a
Platonist, but I disagree with her when it comes to Turing. I take Turing to have
been an idealist,11 which would clarify the observations made above (cf. Tur-
ing’s infinite tape) as well as other findings conveyed, e.g., by Kjeld Schmidt
and Stuart Shanker [22, 23]. The crux, then, is that a diagonal argument as
presented above meant something else to Wittgenstein than to Turing in 1936.
For the former no actual infinity was in play; but there are no indications to
suggest this was also the case for Turing, quite to the contrary. Wittgenstein’s
interpretation of his diagonal argument hinges on an operational notion of fol-
lowing a rule: a distinction can be made before and after one arrives at, say,
the 100th place in the argument above. In a Platonic setting, however, this talk
makes no sense: the entire diagonal already exists, extensionally; that is, no
distinction is in order between the prescriptive (what the rule dictates) and the
descriptive (what the rule has achieved).12 To recapitulate, Wittgenstein would
not have claimed that his diagonal argument had any extensional import. He
would therefore have disagreed with Turing, Alonzo Church, Davis, et al. that
“there exist” number-theoretic functions (let alone incomputable ones). Third,
in her latest book on Wittgenstein, Floyd does remark — and aptly so from
my vantage point — that at least part of Turing’s 1936 paper is extensional
(after all), for else Turing would not have been able to conceptually connect his
automatic machines to the number-theoretic functions of Church [10].

As a final response to the critic, I venture to say that most computer science
professors, today, teach Cantorian diagonal arguments by reasoning both oper-
ationally and extensionally.13 It should be noted that Davis in 1958 was careful
to separate his informal, operational commentary on computability from his
formal, extensionalist account. Alas, conflating a step-by-step analysis of com-
putability with a static understanding is precisely what I did myself in 2019, as
I shall now clarify.

10This Wittgensteinian fragment comes from Floyd [8, p. 35-36].
11I recently gave a talk on this topic, entitled: “Church’s Reception of Turing’s 1936

Paper: A Philosophical Angle,” at the 6th International Conference on the History
and Philosophy of Computing, (ETH Zürich, 2021); extended abstract is available here:
https://hapoc2021.sciencesconf.org/resource/page/id/18

12And it is this Russellian blending of the prescriptive and the descriptive which I have
associated with Turing’s position, in connection with a 1939 exchange between Turing and
Wittgenstein [6]. Although Bertrand Russell tried to change his own ways, he remained a
Platonist for years [18].

13I question whether such accounts are philosophically admissible, but I do not delve into
these matters here.

6

3 Analyzing the Snippet
Impossibility proofs from Turing (1936), Davis (1958), Kleene (1967), and oth-
ers hinge on actual infinity and classical logic. Can the same be said of the
mathematical snippet provided in the introduction of this chapter? Today I
fail to see how that snippet can make any sense without appealing to an actual
infinity. Specifically, the snippet’s “only if” claim pertains to nontermination
(as we shall see) and, thus, expresses the impossibility of termination.

According to all parties involved, the snippet conveys code which is equiva-
lent to that of a specific Turing machine M , which consists of two tapes:

• Tape 1 is used to evaluate expression a

• Tape 2 is the control tape and stores n’s current value

In colloquial language, mathematical Turing machine M(a) takes expression a
as input and subsequently computes d(0); that is, M halts with expression a as
output or M fails to halt. Loosely speaking, M is akin to a universal Turing
machine: it evaluates (or simulates) any expression (or machine description) a.

At this point the theorist in realm B will already insist that machine M
is infinitely large. Since any expression a should be encodable on Tape 1, and
since no notion of ‘external agent’ is permitted in computability theory proper, it
follows that Tape 1 is infinitely long. But, playing the advocate of the computer
scientist in realm A, no fundamental reason has been given so far to discount the
possibility of concocting an alternative, agent-based account of Turing-machine
theory in compliance with the philosophy of the computer scientist. The theorist
will have to indicate when and where the computer scientist literally appeals to
an actual infinity.

The theorist therefore asks the computer scientist to consider the “only if”
part (⇒) of the “observation” in the original snippet:

d(0) converges ⇒ a converges

How do we prove this implication? Since d(n) is defined reductionally in terms
of a, both the theorist and the computer scientist agree to proceed by perusing
the contraposition:

a diverges ⇒ d(0) diverges

As an actualist, the theorist has no objection to this move. Computer scientists
who are liberal potentialists will not object either. But those computer scientists
who are strict potentialists will complain. According to them, the “only if” part
of the “observation” cannot be constructively proved without further givens.14

14Attempting to do so nonetheless would require a definition of ‘functional equivalence’
(or of ‘simulation’) — as in ‘one program is functionally equivalent to another’ (or as in ‘one
machine simulates another’) — which would require engagement with divergent behavior once
again, thereby putting the cart before the horse. See, e.g., Constable & Smith [1, p. 107] for
a technical explication of essentially the same issue.

7

We are thus left with the actualist and the liberal potentialist. Now, “a
diverges” means, by definition, that for any natural number m, we have: a
→|m does not pertain. Similarly, “d(0) diverges” means that for any natural
number m, we have: d(0) →|m does not pertain; that is, d(0) eventually calls
on d(m + 1). So, what we do is we take an arbitrary value m and prove that
d(m) will call d(m+1), which is easy to prove due to the if-then-else construct
in the code snippet and our knowledge that a →|m does not pertain, for any
m. So far so good for both the actualist (theorist) and the liberal potentialist
(computer scientist).

Also, both actors agree to use induction to conclude what they had set out
to prove in the first place: that d(0) will eventually call d(n) for all natural
numbers n. At this point, however, the actualist will remark that Tape 2’s
length (which stores each value of n) must definitely be infinite.15 The potential
liberalist immediately counters by appealing, once again, to his ‘external agent’
who will ‘extend’ the Tape 2 when needed. This time, however, the actualist
has a more refined argument up his sleeve. He will stress that, for the specific a
under scrutiny, it is a priori known (to both himself and the computer scientist)
that Tape 2 will be extended indefinitely; that is, an actual infinite number of
times. (For both actors have jointly proved that d(0) diverges for the specific
a under consideration, and divergence of d(0) means that each natural number
n will be stored on Tape 2 at some point.) So, if the potential liberalist in
A sticks to the interventions of his ‘external agent,’ then the theorist in B
can rightfully claim that he has formally specified strictly more information
about the computation at hand (by appealing to an infinitely long tape) in
comparison to the symbols jotted down on paper by the liberal potentialist.
For, the latter lacks the mathematical apparatus to express the full-fledged
nature of the computation at hand; instead, he has to appeal in some vague
way to some external agent.

To recapitulate, two observations can be made. On the one hand, when a
number-theoretic function f on some argument x is told to all parties involved
that it is undefined — that is, f(x) = ⊥ — then this means nontermination
for both the actualist and the liberal potentialist. On the other hand, to math-
ematically stipulate that a particular computation — i.e., that of d(0) in our
running example — diverges, is to specify that it never halts. And to rigorously
jot that insight down, one has to express a property of all natural numbers.
The actualist can do that without appealing to some external agent because his
tape is infinitely long to begin with. The liberal potentialist who wishes to be
equally rigorous on paper, will not only have to formally spell out the details
of his external agent, he will have to specify the infinitely many interventions
of that agent with regard to the computation at hand. But doing precisely that
requires an appeal to a completed infinity after all.

15The actualist only distinguishes between finite objects and completed infinities; hence, he
opts for the latter in the present case study.

8

4 The “Tape Factory”
I have argued that nothing less than a completed infinity will do, in order to
get the mathematics of a nonterminating Turing-machine computation correct.
Yet, it should be noted that Linnebo & Shapiro side with the liberal potentialist;
that is, they champion the notion of an agent (external to the Turing machine’s
tape) who visits a “tape factory” on a regular basis [16, p. 187]. In my reading,
they believe that potential infinity is all that is required in Turing-machine
computability theory at large, just like I did in 2019. I now explain why I take
such advocacy of liberal potentialism to contradict their own analysis.

Linnebo & Shapiro eloquently convey a distinction between the actualist (on
the one hand) and “potentialists of all stripes” (on the other hand) in connection
with what is known as the plural comprehension (P-Comp) scheme.16 In the
context of Turing machines the ordinary unrestricted P-Comp scheme can be
formulated thus:

∃c. used(c) → ∃cc.∀c. [c ≺ cc ↔ used(c)]

A tape cell c is used if and only if the Turing machine positions its “head”
over cell c during the computation at hand. The symbols “c ≺ cc” read “c is
one of some objects cc.” Note also that tape region cc can — but need not
— symbolically capture the containment of infinitely many cells. (To put it
simpistically: ∃cc has quite another semantics than ∃c.) The presented scheme
conveys the following information:

Provided that there is at least one used tape cell of the computation
(which we are investigating extensionally), there is a tape region cc
of cells that comprise all and only the used tape cells.

Since every Turing-machine computation has at least one used tape cell, we
can simplify the previous formula and obtain ∃cc.∀c. [c ≺ cc ↔ used(c)], which
conveys, that:

There is a tape region cc of cells that comprise all and only the used
tape cells — again, when reasoning extensionally.

To stay faithful to our running example pertaining to d(0) and its divergent
behavior, I define the predicate used (c) as true — for that is precisely what
I, as advocate of the actualist, want to rigorously jot down; cf. the theorist in
realm B who distinguishes only between finite objects and completed infinities
and, therefore, opts for the latter w.r.t. the case study at hand. In other words,
the actualist will endorse the following formula, which symbolically captures a
container cc of infinitely many natural numbers:

∃cc.∀c ∈ N. [c ≺ cc]

16It should be stressed that I am mostly and merely re-applying Linnebo & Shapiro’s rea-
soning in the present context of Turing machines [16, p. 178].

9

The actualist moreover claims that the potentialist cannot convey — symboli-
cally, on paper — the same amount of information without waving his hands to
some tape factory.

Coming now to potentialists of all stripes and particularly the liberal po-
tentialist in realm A, I shall follow Linnebo & Shapiro’s line of reasoning [16,
p. 178] and conclude that, indeed, he does not — in fact, he cannot — accept
the P-Comp scheme, thereby vindicating the actualist’s claim.

The liberal potentialist accepts a formula in classical logic when its modal
translation into a well-specified modal logic (as detailed in the paper by Linnebo
& Shapiro) holds true. Specifically, a necessary condition for the potentialist to
accept the previous formula (in classical logic) is that the following formula (in
modal logic) is true:

♦∃cc. � ∀c. [c ≺ cc]

Informally, this modal predicate states that:

It is possible for there to be some tape region cc — at some fi-
nite stage of Turing-machine computation, for we are now reasoning
intensionally (step-by-step) — which necessarily comprises all and
only the used tape cells.

But this statement is clearly false in our running example. If the modal formula
holds true, then there should be a finite collection cc of tape cells which the
diverging computation d(0) uses and only uses. This is clearly not the case (for
all parties involved). So here we have, to quote Linnebo & Shapiro, “a clear
logical difference between actualism, on the one hand, and the two forms of
potentialism, on the other” [16, p. 178] and, in my reading, it is precisely the
discrepancy discussed informally in the previous section.

To recapitulate, the P-Comp scheme is acceptable to the actualist (realm B),
but not to the liberal potentialist (realm A). The conclusion is that the actualist
can formally express strictly more properties of Turing-machine computability
than the potentialist. Specifically, diverging behavior is no obstacle to the ac-
tualist but it is to the liberal potentialist, provided my readership accepts the
analysis of Linnebo & Shapiro. That analysis, however, was construed inde-
pendently of the present discussion and by two scholars who favor(ed) potential
infinity in the land of Turing machines to begin with.

References
[1] R.L. Constable and S.F. Smith. Computational foundations of basic recur-

sive function theory. Theoretical Computer Science, 121:89–112, 1993.

[2] B.J. Copeland and O. Shagrir. Do accelerating Turing machines compute
the uncomputable? 21(2), 2011.

[3] A.E. Curtis-Trudel. Why do we need a theory of implementation? 2020.
Forthcoming in BJPS.

10

[4] M. Davis. Computability and Unsolvability. McGraw-Hill, New York, USA,
1958.

[5] E.G. Daylight. Turing Tales. Lonely Scholar, 2016.

[6] E.G. Daylight. Addressing the Question “What is a Program Text?” via
Turing Scholarship. 43(4):87–91, 2021.

[7] E.G. Daylight. The Halting Problem and Security’s Language-Theoretic
Approach: Praise and Criticism from a Technical Historian. Computability,
10(2):141–158, 2021.

[8] J. Floyd. Wittgenstein’s Diagonal Argument: A Variation on Cantor and
Turing. In P. Dybjer, S. Lindström, E. Palmgren, and B.G. Sundholm,
editors, Epistemology versus Ontology, pages 25–44. Springer, 2012.

[9] J. Floyd. Turing on “Common Sense”: Cambridge Resonances. In J. Floyd
and A. Bokulich, editors, Philosophical Explorations of the Legacy of Alan
Turing, pages 103–149. Springer, 2017.

[10] J. Floyd. Wittgenstein’s Philosophy of Mathematics. Cambridge University
Press, 2021.

[11] G Gherardi. Alan Turing and the Foundations of Computable Analysis.
The Bulletin of Symbolic Logic, 17(3):394–430, September 2011.

[12] D. Harel. The Science of Computing: Exploring the Nature and Power of
Algorithms. Addison-Wesley, 1987, 1989.

[13] P. Henry. Mathematical Machines. In H. Haken, A. Karlqvist, and
U. Svedin, editors, The Machine as Metaphor and Tool. Springer-Verlag,
1993.

[14] J.E. Hopcroft and J.D. Ullman. Introduction to Automata Theory, Lan-
guages, and Computation. Addison-Wesley, 1979.

[15] S.C. Kleene. Mathematical Logic. John Wiley and Sons, Inc., 1967.

[16] Ø. Linnebo and S. Shapiro. Actual and Potential Infinity. Noûs, 53(1):160–
191, 2019.

[17] M. Minsky. Computation: Finite and Infinite Machines. Prentice-Hall, Inc,
1967.

[18] R. Monk. Russell. In R. Monk and F. Raphael, editors, The Great Philoso-
phers: From Socrates to Turing, pages 307–348. Phoenix, 2000.

[19] C.A. Petri. Communication with automata. Technical report, Griffiss Air
Force Base, New York, Technical Report RADC-TR-65-3777, Vol 1, Suppl.
1 (1966).

11

[20] G. Piccinini. Physical Computation: A Mechanistic Account. Oxford Uni-
versity Press, 2015.

[21] M. Rescorla. A theory of computational implementation. Synthese,
191:1277–1307, 2014.

[22] K. Schmidt. Dispelling the Mythology of Computational Artifacts. In
K. Schmidt, editor, Cooperative Work and Coordinative Practices, pages
391–413. Springer-Verlag, London/New York, 2011.

[23] S. Shanker. Wittgenstein’s remarks on the foundations of AI. Routledge,
1998.

[24] A.M. Turing. On computable numbers, with an application to the Entschei-
dungsproblem. Proceedings of the London Mathematical Society, 2nd series,
42:230–265, 1936.

[25] A.M. Turing. On computable numbers, with an application to the Entschei-
dungsproblem. A correction. Proceedings of the London Mathematical So-
ciety, 2nd series, 43, 1937.

[26] J. Woodward. Mechanistic explanation: Its scope and limits. Proceedings
of the Aristotelian Society, Supplementary Volumes, 87:39–65, 2013.

[27] A. A. Zenkin. Logic of Actual Infinity and G. Cantor’s Diagonal Proof of
the Uncountability of the Continuum. Review of Modern Logic, 9(3-4):27
– 82, 2004.

A What is a Turing Machine?
The philosophy of computing is a flourishing research field. In a recent survey
article, entitled: “Why do we need a theory of implementation?” [3], Curtis-
Trudel provides conceptual diversity with regard to the question: ‘What is a
Turing machine?’ For example, he sketches contrasting positions formulated by
Piccinini, Copeland & Shagrir, and Rescorla. Piccinini is quoted as follows:

The tape [of the Turing machine] and processing device are explicitly
defined as spatiotemporal components. [20, p. 119-120]

One school of thought indeed takes a Turing machine to be spatiotemporal
(irrespective of Piccinini’s own nuanced position on this topic). In this con-
text, Curtis-Trudel aptly injects the “Turing-machine realism” [3, Sec. 6.1] of
Copeland & Shagrir into his narrative. These two authors described (but did
not per se advocate) an “extra ontological level with Turing machines ‘hav-
ing’ causal features” [2, p. 234, my emphasis]. I mention in passing that I
use the word ‘causal’ in compliance with Curtis-Trudel’s “causal” and “causal-
mechanical” terminology; that is, with the understanding that the notion of
‘cause’ is more basic than ‘mechanism,’ cf. [26, p. 45].

12

In stark contrast to the positions illustrated so far, another school of thought
casts a Turing machine as an abstract model of a physical system. In Rescorla’s
words:

To describe a physical system’s computational activity, scientists
typically offer a computational model, such as a Turing machine or
a finite state machine. Computational models are abstract entities.
They are not located in space or time, and they do not participate
in causal interactions. [21, p. 1277]

In sum, there is no agreement among philosophers of what a Turing machine
entails.

All aforementioned philosophers, along with the present author, seem to
share a dualistic philosophical outlook on science and technology, distinguishing
between non-causal (abstract) objects and causal objects. The latter need not
be physical per se according to some scholars. In the present chapter a causal
Turing machine is treated as a mathematical object.

13

