Turing Tales

Edgar G. Daylight
Contributions by Arthur C. Fleck and Raymond T. Boute

Edited by Kurt De Grave.

~ A

LONELY SCHOLAR"

SCIENTIFIC BOOKS

First edition
Version 1.0

© 2016 Edgar G. Daylight
Daylight can be contacted at egdaylight@dijkstrascry.com.

Published by Lonely Scholar bvba
Dr. Van De Perrestraat 127

2440 Geel

Belgium
http:/fwww.lonelyscholar.com

Typeset in IXIEX

All rights reserved. No part of the publication may be reproduced in any
form by print, photoprint, microfilm, electronically, or any other means
without written permission from the publisher.

Alle rechten voorbehouden. Niets uit deze uitgave mag worden vermenig-
vuldigd en/of openbaar gemaakt worden door middel van druk, fotocopie,
microfilm, elektronisch of op welke andere wijze ook zonder voorafgaande
schriftelijke toestemming van de uitgever.

D/2016/12.695/1
ISBN 978-94-91386-06-0
NUR 980, 686

1. Introduction

Researchers from computer science, linguistics, physics, and other
disciplines have a tendency to speak about their mathematical models
as if they coincide with reality. The following statement, for example, is
not uncommon in physics:

Kurt Godel proved that time travel is possible.

Careful researchers, by contrast, will stress at least once in their writings
that:

Kurt Godel proved that time travel is in principle possible
according to his mathematical model.

More sentences of the first kind are presented in this book with regard
to computer science. They show that researchers frequently fuse their
mathematical models with their engineered systems.

Mistaking the category of mathematical objects for the category of
concrete physical objects amounts to making a category mistake. Some
category mistakes are less innocent than others, as Chapter 6 — A Titanic
Turing Tale — will reveal. For example, it is easy to find computer science
papers in which the authors explicitly and incorrectly state that they have
mathematically proved that certain systems cannot be engineered. While
many people would like computer science theory to take precedence over
software engineering, nobody wants this ideal if the price to pay is faulty
reasoning. Rectifications are required and as a brief indication of where I
am heading, Sections 1.2 and 1.3 in the present introduction contain my
scrutiny of statements made by Michael Hicks and referees of computer
science’s flagship journal, the Communications of the ACM.

Category mistakes are discussed at length in the second part of this book,
while the first part reveals another tendency in computer science: that
of constructing a set of foundations in which ideas that had not been

2 INTRODUCTION

understood as connected when they were put forward are retrospectively
integrated. Later generations of computer scientists then assume
that these things have always been related. The connection between
universal Turing machines and computers is one notable example. Many
computer scientists who have given invited talks about the history of
their discipline have made statements of the following kind:

During the 1950s, a universal Turing machine became widely
accepted as a conceptual abstraction of a computer.

Other scholars, by contrast, will refrain from making such general and
appealing claims. Instead, they will focus on specific actors and write
the following, for example:

By 1955, Saul Gorn viewed a universal Turing machine as a
conceptual abstraction of his computer.

The subject of the first sentence is not a historical actor, unlike the subject
of the second sentence. If you happen to prefer the first sentence and tend
to write sentences of this kind, then it is likely that your exposition will,
at best, capture a development of ideas that is detached from the people
who shaped the discipline under investigation. As a result, neither you
nor your readership will realize that a universal Turing machine had
different meanings for different actors, nor will it become apparent that
the meaning of a Turing machine changed over time for each individual
actor.

We will learn more about Saul Gorn and Turing machines in Chapter 2:
A Tatty Turing Tale. The word “tatty” is a synonym for “worn out” and
it is indeed a worn-out tale — at least for historians today — that Turing
supposedly invented the modern computer. It is likely that you know
somebody who proclaims that Turing is the inventor of the computer
because his 1936 theory was a prerequisite for later breakthroughs in
engineering. Chapter 2 reveals that this romantic view of scientific
progress is misleading to say the least. Chapter 3 illustrates that there is
a Dutch exception to the rule.!

The overarching theme of the present book, then, is the relationship
between theory and engineering. Two specific topics are the histo-
riographical mistakes and category mistakes made by researchers of
standing in their quest for a utopian world, a world in which the role of
mathematics in engineering is intended to be that of a queen rather than
a humble servant.?

JOHN REYNOLDS AND TURING'S 1936 PAPER 3

My meta-challenge is to convince the reader that thorough historical
and philosophical investigations into computer science can advance
computer science itself. As I will argue in this chapter, there is a marked
difference between the computer scientist of today and the computer
scientist of tomorrow.

1.1 John Reynolds and Turing’'s 1936 Paper

In order to adhere to academic standards, Gerard Alberts, a historian
of mathematics and computing, has advised me to avoid using
technological and theoretical concepts such as ‘program,” ‘compiler,” and
‘“universal Turing machine,” as the subjects of my sentences. Disregarding
his advice often amounts to writing expositions in which one line of
thought dominates the entire story. For example, if I choose as a subject
matter Turing’s 1936 paper [320], or more specifically, the connection
between Turing’s 1936 universal machine and modern computers, then
it becomes very tempting to view the history of computing in terms
of those few people who grasped that connection early on. Turing,
for example, already saw a connection around 1944. This observation
alone, however, does not make him an influential actor in the history of
science and technology. By following Alberts’s advice, the scholar loses
the inclination and the temptation to paint the history of computing as
a continuous stream from Turing’s 1936 paper to the stored-program
computer. The scholar will fail in explaining every advancement in
terms of Turing machines, and this is to the good.

The late Michael Mahoney warned his fellow historians not to fall into
the trap of viewing everything with the same glasses. The computer,
Mahoney said specifically, is not one thing but many different things.
He continued as follows:

[TThe same holds true of computing. There is about both
terms a descriptive singularity to which we fall victim
when, as is now common, we prematurely unite its multiple
historical sources into a single stream, treating Charles
Babbage’s analytical engine and George Boole’s algebra of
thought as if they were conceptually related by something
other than twentieth-century hindsight. [234, p.25-26]

In my own words, then, the multitude of computer-building styles,
programming habits, receptions of Turing’s work, interpretations of the
terms “recursion” and “computer program,” and so on should be placed

4 INTRODUCTION

front and center by computer scientists and historians alike. Terms such
as “general purpose” and “Turing universal” had different meanings
for different actors, and their usage as synonyms is only justified if this
conforms with the historical context. I take Mahoney’s challenge to
mean that we need to handle each and every term with great care.

Unfortunately, Mahoney “never took up his own invitation,” says
Thomas Haigh in the introduction of Mahoney’s collected works [234,
p-5,8]. Men like John McCarthy, Dana Scott, Christopher Strachey, Turing,
and John von Neumann appear in almost every chapter in Mahoney’s
collected works, but, as Haigh continued,

[W]e never really learn who these people are, how their
ideas were formed and around what kind of practice, what
their broader agendas were, or whether anything they said
had a direct influence on the subsequent development of
programming work. [234, p.8]

Mahoney did occasionally provide some insights about the aforemen-
tioned men. Coincidentally or not, the rare passages in which he did also
comply with the writing style advocated by Alberts, as the following
excerpt from Mahoney’s oeuvre illustrates.

Christopher Strachey had learned about the [lambda]-calculus
from Roger Penrose in 1958 and had engaged Peter J. Landin
to look into its application to formal semantics. [234, p.172]

Words such as these inform the reader about several historical actors,
their social networks, and their research objectives.

In general, however, Mahoney much preferred technological concepts
over historical actors.> One instructive example comes from his 2002
work, in which he stated that:

The idea of programs that write programs is inherent in the
concept of the universal Turing machine, set forth by Alan M.
Turing in 1936. [234, p.78-79, my emphasis]

This statement, which has an idea as subject matter, is anachronistic.
Turing’s 1936 paper was not at all about programs that write programs.
Turing’s universal machine did not modify its own instructions, nor did
it modify the instructions of the other machines that it simulated.

Instead of alluding to compilers, as Mahoney did, one could perhaps
refer to interpreters when attempting to document the importance of

JOHN REYNOLDS AND TURING'S 1936 PAPER 5

Turing’s 1936 paper. After all, interpreters emulate programs — loosely
speaking. The following sentence is technically more accurate:

[Turing’s] universal machine in particular is the first example
of an interpretative program. [88, p.165]

These words come from the eminent logician Martin Davis who has
made great strides in explaining to the layman the importance of logic is
in computer science. The subject in Davis’s sentence is Turing’s universal
machine, not a historical actor. From Alberts’s perspective, then, it is
tempting to rewrite, and in my opinion improve, the wording. My first
suggestion is to write:

During the early 1960s, John McCarthy viewed a universal
Turing machine as an interpretative program.

This sentence limits the scope of Turing’s influence by focusing on
McCarthy and the years in which he thought about interpretative
programs (in the modern sense or in 2 more modern sense of the word).

My second, more elaborate, suggestion is to write:

In the 1950s, when interpreters were built, leading computer
programmers like McCarthy did not initially view Turing’s
universal machine as an interpretative program in a practical
sense. Although McCarthy had by 1960 already written a
paper [238] in which he had connected the universal Turing
machine to his LISP programming system, he did not see the
practical implication of LISP’s universal function eval. It was
his student Steve Russell who insisted on implementing it.
After having done so, an interpreter for LISP “surprisingly”
and “suddenly appeared”.*

The previous fragment informs the reader about McCarthy and his
research team, partially capturing how Turing’s 1936 universal machine
eventually led to McCarthy’s interpreter for LISP. The passage does
not disregard the possibility that others had already made some kind
of a connection between a universal Turing machine and programming
technology in earlier years. However, if one wants to make a general
claim about Turing’s legacy, then he or she should first do the hard work
of finding several specific actors for which the claim holds.

Taken at face value then, Mahoney’s oeuvre gives the false impression
that several influential historical actors, along with himself, thoroughly

6 INTRODUCTION

understood Turing’s 1936 paper and the logic literature in general.
“Computer science,” Mahoney postulated in 1997, “had come around
full circle to the mathematical logic in which it had originated” [234,
p-144]. However, this claim does not sit well with his own appeal to
avoid falling into the trap of viewing everything with the same — and
in this case, logical — glasses time and again. Nor does it sit well with
several primary sources and oral histories. For example, according to an
expert in Separation Logic, the late John Reynolds, understanding the
logical literature is “taxing.”

[Reynolds:] I'd better admit that I haven’t read Turing’s
1936 paper. I probably avoid old papers less than most
computer scientists, but I wasn’t trained in logic and thus
find the subject taxing to read (indeed, more to read than to
write). [288]

Men of the stature of Tony Hoare and Peter Naur had difficulty studying
Turing’s 1936 paper [98]. In addition, Davis’s remark at the end of
Christos Papadimitriou’s talk at Princeton in 2012 clearly shows that
prominent computer scientists, such as Papadimitriou, still do not fully
comprehend Turing’s 1936 paper either [270].

In his monumental book A Science of Operations [280], Mark Priestley
documented the interaction between theory and practice in the develop-
ment of computing, starting from the early work of Charles Babbage and
ending with the programming language Smalltalk, thereby providing
a coverage that has yet to be matched by fellow historians. Based on
his work and on some of my own research, I now list seven influential
publications of the 1950s-1960s. Each publication played an important
role in transferring ideas from logic to computing.

e 1950: Turing’s Computing machinery and intelligence [322]

e 1950: Paul Rosenbloom'’s Elements of Mathematical Logic [294]
e 1952: Stephen Kleene's Introduction to Metamathematics [202]
e 1954: Andrey Markov Jr."s Theory of Algorithms [197]

e 1958: Davis’s Computability and Unsolvability [86]

e 1958: Haskell Curry & Robert Feys’s Combinatory Logic,
Vol. 1[78]

JOHN REYNOLDS AND TURING'S 1936 PAPER 7

® 1967: Marvin Minsky’s Computation: Finite and Infinite Ma-
chines [245]

The influence exerted by most of the publications listed above has yet to
be thoroughly investigated in future work. Turing’s scholarly legacy in
computer science, not to mention that of Emil Post, Alonzo Church and
others, has yet to be described.

Priestley has discussed the influence of the first publication at length
in ‘Logic and the Invention of the Computer” [280, Ch.6]. Priestley
argued that Turing had little influence in the 1940s (and in computer
building in particular) but that his 1950 paper, ‘Computing machinery
and intelligence,” was “a turning point in the characterization of the
computer as a universal machine” [280, p.153]. “After 1950,” he wrote,
“it became common to describe electronic digital computers as being
instantiations of Turing’s concept of a universal machine” [280, p.124].
Furthermore, he writes:

Following 1950, [Turing’s 1950] paper was widely cited, and
his characterization accepted and put into circulation. [280,
p-153]

These words by Priestley give the unfounded impression that most
computer practitioners became acquainted with Turing’s work during
the 1950s. If I now name people who did not grasp, read, or come across
Turing’s work, Priestley’s readership will think that these are exceptions.
By the late 1950s, Turing’s work had indeed become increasingly popular
in some niches of computing (see Chapters 2 and 3). However, if
anything at all can be stated about the majority of computer practitioners,
then it is that they either did not yet understand the all-purpose nature
of the computer, or they did but without having resorted to (a re-cast
version of) Turing’s work [98]. Ideally, and following Alberts, neither
Priestley nor I should be making claims about the majority of computer
practitioners in the first place. Instead of taking Turing’s 1950 paper as a
subject, as Priestley has done in the above passage, a historical actor or a
well-defined group of historical actors could be chosen instead, thereby
limiting the scope of Priestley’s claim regarding Turing’s influence.’

To conclude, then, I urge computer scientists and historians to respect
the various receptions of Turing’s work. Furthermore, let us view our
past not solely as an application of Turing’s 1936 paper but also as a
history of struggling to understand what Turing’s 1936 paper has to offer
to some, perhaps many, but definitely not all of us. This brings me to
my final introductory remarks about Chapters 2 and 3, chapters which

8 INTRODUCTION

I wrote with the previously explained methodology and motivation in
mind. Both chapters cover the 1950s and the role that Turing’s 1936
paper played in the emerging discipline now called computer science.
Chapter 2 focuses on Anglo-Saxon developments and Chapter 3 zooms
in on the Dutch cities Delft, The Hague, and Amsterdam. It was in
Delft and later in The Hague where Turing’s 1936 paper did influence
computer building to an exceptional extent, both on an academic level
and in an industrial European-wide context due to the extraordinary
work of Willem van der Poel.

My main interests in Chapters 2 and 3 are, again, the relationship
between modern logic and engineering and the way in which this
relationship is erroneously portrayed today, albeit often unintentionally,
in order to advance a particular research agenda.

1.2 Michael Hicks and Formal Verification

Viewing a universal Turing machine and a stored-program computer as
one and the same amounts to making a trivial, yet common, category
mistake. Jack Copeland is perhaps the most renowned scholar who
insists that Alan Turing came up with “the stored-program universal
computer” as a “single invention” in 1936. Andrew Hodges, Martin
Davis, and others have, in turn, complained about Copeland’s viewpoint
and I suspect that Turing would do the same if he were still alive today.®

Why would Turing, of all people, mistakenly view his mathematical
model of computation, now called a Turing machine, as a concrete
physical object such as a stored-program computer? A Turing machine
can be practically realized in multiple ways, and a stored-program
computer is just one of them. Furthermore, and as I will highlight
repeatedly, a Turing machine is only one possible model of a computer.

Category mistakes are not limited to digital systems, however. Engineers
in all areas use models and can potentially fall into the trap of mistaking
the model for reality. Dave Parnas told me that one of his favorite
examples in this regard is Ohm’s Law, which states that V = I x R.
In reality, the ratio between current (I) and voltage (V) varies, i.e., the
relationship is not actually linear. Engineers can use this law to analyze
a circuit and verify that it has the desired behavior only to find that the
circuit fails in certain conditions. Parnas gives the following example:

The circuit may overheat and the resistance (R) will change.
Ohm’s Law can be made an accurate description of the device

MICHAEL HICKS AND FORMAL VERIFICATION 9

by adding conditions, e.g. V — [x R < Jifa < I < betc. The
result will be much more complex, but it will give conditions
under which the model is accurate. Even this is a lie, as
it makes assumptions about ambient temperature and the
aging of the components that are not stated.”

Parnas’s main point is that engineers must be aware of the limitations
of models as descriptions. More on Parnas’s views can be found in the
proceedings of The Future of Software Engineering, a workshop held in ETH
Zurich in November 2010 [103, 255]. Parnas concludes by noting that
this awareness is completely missing from the UML (Unified Modeling
Language) and MDE (Model-Driven Engineering) literature. Can the same
be said about the programming language literature? The full answer to
this question is given in Chapter 6.

Of course, one could argue that researchers frequently choose to craft
their sentences with brevity in mind and that they are well aware of
the fact that they are, strictly speaking, making small category mistakes;
surely, they must know that these are models. This is precisely the
kind of response I received from a POPL referee a few months ago with
regard to my rejected paper, entitled: ‘Category Mistakes in Computer
Science at Large.” (POPL is an abbreviation for Principles of Programming
Languages and the contents of the aforementioned paper constitute
Chapter 6.) When I gave this kind of response to the colleague who
brought to my attention the statement about Godel and time travel, he
insisted that some physicists really do believe that Godel proved that
time travel is possible. As this book will reveal to the neutral scholar, the
same can be said about a large number of computer scientists.

Similar remarks were made by the mathematician Vladimir I. Arnold in
1997:

The mathematical technique of modeling consists of [...]
speaking about your deductive model in such a way as
if it coincided with reality. The fact that this path, which
is obviously incorrect from the point of view of natural
science, often leads to useful results in physics is called
“the inconceivable effectiveness of mathematics in natural
sciences” (or “the Wigner principle”). [15, my emphasis]

The mathematical technique of modeling is undoubtedly useful in
practice. However, society will fare even better when the vices of
modeling are also placed front and center every now and then.

10 INTRODUCTION

Coming to formal verification, then, several prominent computer
scientists — some of whom I have met and talked to many times —
actually believe the following statement:

... full formal verification, the end result of which is a proof
that the code will always behave as it should. Such an
approach is being increasingly viewed as viable. [176]

These words come from Michael Hicks, who said in 2014 that we can
have a mathematical proof of the behavior of an engineered system. The
best we can actually do — as already pointed out by Brian Cantwell
Smith [303], James Fetzer [125], and Timothy Colburn [72] in previous
decades and in a technically more refined way in the present book — is
to prove certain mathematical properties of one or more mathematical models
of the running system. This small nuance will presumably be readily
accepted by many readers, but I hope to bring more conceptual clarity
to the table in the sequel.®

Rice’s Theorem Under Attack

Let us consider some of the alleged practical implications of Rice’s
theorem. Here, my own thoughts become more visible, since the writings
of Fetzer and the other two aforementioned philosophers do not cover
computability theory.

For the uninitiated, Figure 1.1 presents Wikipedia’s description of Rice’s
theorem. For both the uninitiated and the initiated, Figure 1.1 comes
very close to illustrating a category mistake, and therefore exemplifies a
lack of conceptual clarity that I hope to remedy in the present book. I
will also return to Figure 1.1 in the final chapter.

Stepping away from Wikipedia for now and coming to Hicks’s
discussion on software bugs and Rice’s theorem, this is how Hicks
defines a “sound” mathematical analysis:

A sound analysis is one that, if there exists an execution that
manifests a bug at run-time, then the analysis will report the
bug. [176]

Note that the first occurrence of the word “bug” refers to an event in the
real, physical world. The second instance of the same word refers to a
mathematical model of a bug (and only indirectly to the manifested bug
in the real world). For the sake of clarity — and at the expense of some

MICHAEL HICKS AND FORMAL VERIFICATION 11

In computability theory, Rice's theorem states that all non-trivial,
semantic properties of programs are undecidable. A semantic
property is one about the program’s behavior (for instance, does
the program terminate for all inputs), unlike a syntactic property
(for instance, does the program contain an if-then-else statement).
A property is non-trivial if it is neither true for every program,
nor for no program.

We can also put Rice's theorem in terms of functions: for any
non-trivial property of partial functions, no general and effective
method can decide whether an algorithm computes a partial
function with that property. Here, a property of partial functions
is called trivial if it holds for all partial computable functions or
for none, and an effective decision method is called general if it
decides correctly for every algorithm.

Figure 1.1: Wikipedia’s description of Rice’s theorem portrays rather
accurately how it is taught in academia today in the sense that the first
paragraph comes very close to illustrating a category mistake. (How
close depends on how careless one answers the question: What, precisely,
is a program?) This mistake is discussed at length in the present book.
The second paragraph is less problematic but is not very accessible to the
average computer scientist for it requires prior knowledge of partially
computable functions and computability theory in general. For the
record: I accessed the Wikipedia site on October 26, 2016.

brevity — it is worthwhile to make this categorical distinction explicit af
least once, as I am doing here and will do throughout most of this book.

Another important remark is that if the first occurrence of “bug” indeed
refers to an event in the real world, then so does the word “execution.”
However, the mathematical analysis has to rely on a mathematical notion
of execution. A distinction is therefore required between a ‘real execution’
and a ‘mathematical execution.” The former belongs to the category of
concrete physical objects, while the latter belongs to the category of
abstract objects.

Furthermore, Hicks’s ‘mathematical execution” denotes a mathematical
object in conformance with his chosen model of computation. Somebody
else — following, say, Edsger Dijkstra’s or Parnas’s schools of thought,
described below — might choose another model of computation. So
it would be clearer if Hicks would also make his chosen model of
computation explicit in his definition.

12 INTRODUCTION

In other words, a sound analysis says something about a mathematical
model and only indirectly something about the computer program that
is being modeled. Furthermore, since someone else can choose another
model for the same computer program, it is misleading to suggest that
there is a one-to-one interdependence between the computer program
and the chosen mathematical model.

Similar remarks can be made about Hicks’s definition of a “complete”
analysis, which is as follows:

On the flip side, a complete analysis is one that, if it reports a
bug, then that bug will surely manifest at run-time. [176]

Again, a mathematically modeled bug (which the analysis “reports”)
is categorically distinct from a bug encountered during the “run-time”
execution of a computer program. They are not the same thing.

Am I right to conclude that Hicks and other programming language
specialists often think they are directly referring to both their mathe-
matical model and the actual computer program? (Chapters 5 and 6
will delve into these matters further.) Later on, Hicks provides the
following statement, which I, as a ‘POPL outsider,” have genuine difficulty
in comprehending:

Ideally, we would have an analysis that is both sound and
complete [Yes], so that it reports all true bugs, and nothing
else [No!]. [176]

This statement can only be correct if the category of abstract objects
coincides with the category of concrete physical objects. However, since
a bug encountered during program execution is categorically different
from a mathematical bug, what does Hicks’s sound and complete
analysis actually report? Does it report

1. bugs manifested during program execution,

2. mathematical bugs, or

3. both?
Again, I claim that the correct answer is 2. Hicks’s analysis reports about
mathematical bugs, that is, mathematically modeled bugs. Does Hicks

think the answer is 3., in the sense that both categories coincide? Or
am I wrong to question whether there is a one-to-one interdependence

MICHAEL HICKS AND FORMAL VERIFICATION 13

between the computer program and a well-chosen mathematical model
of the computer program?

To recapitulate, at least as far as my understanding goes: a perfect
mathematical analysis (in the sense that it is both sound and complete)
cannot guarantee something about the real world, including the behavior
of the engineered system under scrutiny along with the bugs that
manifest themselves in the process. This would only be possible if
the mathematical object and the engineered system belong to the same
category (and, moreover, if we can specify absolutely everything about
the engineered system in a concise and useful manner). A sound and
complete analysis can provide engineers with extra confidence that their
system will behave appropriately in the real world and nothing more.

To continue with Hicks’s views on formal verification, it should also
be mentioned at this point that, contrary to Hicks, computer scientists
following Dijkstra and Adriaan van Wijngaarden would mathematically
model a computer program — such as a C computer program — with a
Turing-incomplete model of computation and, specifically, with a finite
state machine.” I therefore also struggle with what I take to be Hick’s
subsequent suggestion, which is only to use Turing-complete languages
when mathematically modeling computer programs:

Unfortunately, such an [ideal] analysis [which is both sound
and complete] is impossible for most properties of interest,
such as whether a buffer is overrun (the root issue of
Heartbleed). This impossibility is a consequence of Rice’s
theorem, which states that proving nontrivial properties of
programs in Turing-complete languages is undecidable. So
we will always be stuck dealing with either unsoundness or
incompleteness. [176]

I certainly agree with Hicks that if we use a Turing-complete language,
then we cannot ignore an important consequence of Rice’s theorem,
namely that “proving nontrivial properties” of our mathematically mod-
eled computer programs (expressed in our Turing-complete language)
“is undecidable.” However, engineers such as Parnas resort to multiple
models to describe buffer overflows (pertaining to, say, a C computer
program), including models that are described with a Turing incomplete
language. The bottom line is that engineers do not have a preference for
sticking to a single modeling language, nor do they advocate a Turing-
complete language per se.

Contrary to many (if not most) programming language specialists,
engineers do not want to attach precisely one meaning to each computer

14 INTRODUCTION

program. An engineered system can be mathematically modeled in
more than one way; each model has its pros and cons. I can model
my computer with both a finite state machine and a linear bounded
automaton without contradicting myself. Likewise, I can mathematically
model my C computer program in multiple, complementary ways, for
example with a finite state machine, with primitive recursive functions,
and with general recursive functions. The richness lies in the multitude
of ways in which reality can be mathematically modeled, and I hope to
convey this richness in the remainder of this book.

1.3 Abusing the Halting Problem

The analysis presented so far shows that, at the very least, a categorical
distinction is required between computer programs and mathematical
programs. The term “mathematical program” is used from now on as
an abbreviation for “a mathematical model of a computer program.”

Another obvious distinction that is worth making explicit at least once is
the distinction between computers (which include laptops and iPads) on
the one hand and their mathematical models on the other hand. Strictly
speaking, then, it is wrong to say that:

A computer is a finite state machine.

Once again, this is like speaking about a mathematical model (the finite
state machine) as if it coincides with reality (the computer). But making
this observation explicit in computer science, as I am doing now and as I
have done in my rejected paper entitled ‘Category Mistakes in Computer
Science at Large,” seems to be rather unusual.

My paper on Category Mistakes was rejected by two POPL referees
for some very good reasons, albeit non-technical ones. I shall have
more to say about the reviews I received in Chapter 5. For now, it is
important to note that my rejected POPL paper contains quoted reviews
from anonymous referees of the Communications of the ACM (CACM).
With regard to these CACM review comments, here is what the first POPL
reviewer had to say:

I’'m not sure why CACM reviewers would ignore the difference
between real-world systems and their mathematical models.
I don’t actually see that mistake in the quoted reviews [in

your paper].

ABUSING THE HALTING PROBLEM 15

I am afraid that the reviewers of the CACM have applied faulty reasoning,
and I have illustrated precisely this in my POPL paper. I shall illustrate
some of this faulty reasoning in the next section, leaving the rest for
Chapter 6.

Computers vs. Mathematical Models

Strictly speaking, a computer is not a finite state machine. The former is
a concrete physical object which can be mathematically modeled by the
latter, which is an abstract object. Here then is the first comment that I
have received from a referee of the CACM:

My laptop is a universal Turing machine, but its tape size is
of course limited by the finiteness of human resources.

If you limit the tape size of a universal Turing machine, you may end
up with, say, a linear bounded automaton or even an automaton that is
computationally equivalent to a finite state machine. You thus end up
with another mathematical model of computation but not with a laptop
(i.e., a concrete physical object). To be more precise, I stress that:

You cannot use human resources to limit the size of a
mathematical object, i.e., the tape. Note that the “tape” indeed
denotes a mathematical object and not a physical object,
contrary to what the word “tape” seems to suggest.

You can introduce mathematical restrictions to limit the size of a
mathematical object; likewise, you can use human resources to limit
the size of a concrete physical object, such as a laptop. However, once
again:

A Turing machine is a mathematical object, it is not a
computer. This is contrary to what the word “machine” seems
to suggest.

I'understand the CACM reviewer’s train of thought. I, too, was educated
as a computer scientist and I used to speak about my mathematical
model as if it coincided with reality. The right way to put it, once again,
is as follows:

Placing finite bounds on an abstract object (Turing machine)
does not make it a concrete physical object (laptop). Instead,

16 INTRODUCTION

it results in another abstract object (e.g., a linear bounded
automaton or a finite state machine) that can potentially serve
as another mathematical model for the physical object at
hand.

I agree that these words convey a very trivial distinction. However,
missing this distinction can easily lead to faulty reasoning. Only a
mathematical language can be Turing complete; it thus makes no sense to
question whether your iPhone is Turing universal or not (as, for instance,
did almost all my computer science students at Utrecht University in
2015). Unfortunately, statements of this kind can be found all over
the place, not only in peer reviews but also in articles and in books,
published by reputable publishers. I have even had discussions with
colleagues who start proving on the blackboard and in the classroom
that my laptop is a universal Turing machine after all. They really think
they are giving a mathematical proof about my laptop. I emphasize, once
again, that:

It is a mathematical model of a laptop that may or may not
be Turing universal, not the laptop itself. Yet, anonymous
referees of computer science’s flagship journal, the Com-
munications of the ACM, disagree with this statement and
erroneously place both objects in the same category. This is
where a seemingly innocent category mistake occurs.

Comparing a laptop with a Turing machine is only warranted with the
proviso that we all agree we are reasoning across separate categories.

A Big Category Mistake

Grasping the significance of seemingly obvious categorical distinctions
is not easy; here is yet another response that I have received from a
referee of the CACM and which I have also reported in my rejected POPL

paper:

What does the undecidability proof of the halting problem
for computer programs actually tell us? Like diagonalization
proofs in general it may be viewed finitely as saying that,
if there is a bound M on the size of accessible computer
memory, or on the size of computer programs, or any other
resource, then no computer program subject to the same
resource bounds can solve the problem for all such computer
programs.

PLURALISM TO THE RESCUE 17

The previous remark and the follow-up remark, presented below, are
only correct if we accept the following two assumptions (both of which
are wrong):

1. A computer program is a synonym for a mathematical program.

2. The mathematical program (mentioned in the previous sentence)
must be equivalent to a Turing machine program and not to, say, a
primitive recursive function.

The reason why the second assumption has to hold is merely because
the referee is referring to the halting problem of Turing machines.
Continuing with the remarks made by the anonymous referee:

If computer program A solves correctly all halting problems
for computer programs respecting bound M, then the
counterexample computer program T must exceed that
bound, which is why A fails for T. To solve problems of
computer programs, one needs an ideal program.

This quote hints at a distinction that must be made between finite and
infinite objects (with the latter being labeled “ideal”); however, the
categorical distinction between computer programs and mathematical
programs goes completely unnoticed. This is where a big category
mistake occurs. The undecidability proof of the halting problem
concerns mathematical programs only and not computer programs. The
diagonal argument can only be applied to mathematical objects, not
engineered artefacts. Thus, while the referee thinks this is a mathematical
argument, in fact this is faulty reasoning. The referee is not proving
something about computer programs but something about a *particular*
mathematical model of a computer program! So much for mathematical
rigor.'0

1.4 Pluralism to the Rescue

Based on the above analysis it is now possible to provocatively define
both a computer scientist of today and one of tomorrow. A computer
scientist of today is somebody who conflates:

¢ a Turing machine and a computer,

¢ a Turing tape and a physical tape,

18 INTRODUCTION

¢ a mathematically modeled bug and a bug encountered during
program execution, and

¢ a mathematical object and a computer program.

Moreover, the mathematical object denoted in the last item must be
a Turing machine or some object computationally equivalent to it. (I
realize that programming language experts do not work with Turing
machines per se; however, this is rather beside the point.)

The computer scientist of tomorrow, by contrast, is sensitive to the
aforementioned categorical distinctions and, furthermore, is receptive to
the multitude of answers to the seemingly simple question:

What is a computer program?

Today, we know that the “computer program” concept has acquired at
least four meanings during the course of history. It can refer to:

1. a physical object a la Maurice Wilkes in 1950 and Dave Parnas in
2012,

2. amathematical object of finite capacity a la Edsger Dijkstra in 1973,

3. a mathematical (Turing-machine) object of infinite size a la
Christopher Strachey in 1973, and

4. a model of the real world that is not a logico-mathematical
construction a la Peter Naur in 1985 and Michael Jackson today.!!

Moreover, wearing my philosophical hat, I will follow Raymond
Turner’s recent analysis [325] and view a computer program as a
technical artefact.!? I shall define and use this fifth interpretation of
what a computer program entails in Chapter 6.

The multitude of interpretations of what a computer program entails
is an example of epistemic pluralism. In addition, computer scientists
have not consistently followed a single interpretation of a computer
program in their writings. Marvin Minsky’s 1967 book, Computation:
Finite and Infinite Machines [245], for example, uses the word “program”
on page 25 to refer to data and instructions that fit in the real, finite
memory of a physical computer (that is, as a physical object). On page
153, by contrast, the very same word refers to a mathematical object of
“unlimited storage capacity,” akin to a Turing machine. Likewise, Tony
Hoare consistently used the word “computer” in 1969 to refer to a real

ARTHUR FLECK'S REFLECTIONS & RAYMOND BOUTE'SSCRUTINY 19

physical device, while in his 1972 paper ‘Incomputability’ [181] the very
same word sometimes refers to a finite, physical device and sometimes
to a mathematical abstraction in which “infinite computations” can arise.

In sum, historical actors have not always explicitly distinguished
between real artefacts and their models, let alone between all the
aforementioned meanings of a “computer program.” In the words of
Bernadette Bensaude-Vincent, “epistemic pluralism is a major feature of
emerging fields” [332] and I hope my readers will come to appreciate
that computer science is still too young a field to be any different.

1.5 Arthur Fleck’s Reflections & Raymond
Boute’s Scrutiny

The two cherries on the cake are Chapter 4 and Chapter 7, written by
Arthur Fleck and Raymond Boute, respectively. When a software scholar
receives personal reflections and detailed scrutiny from two historical
actors, along with the implicit question about whether and where their
narratives can be published, the scholar experiences one of his finest
days.

Arthur Fleck is former chairman of the Computer Science Department
of the University of Iowa. His personal and technical recollections on
programming language history — on FORTRAN, ALGOL 60, EULER, APL,
SNOBOL4, Smalltalk-80, FP, Miranda, and Prolog — are an absolute
delight to read and I am confident that fellow historians will buy this
book for Chapter 4 alone.

Raymond Boute is professor emeritus in formal methods from INTEC
Department of Information Technology, Ghent University. He questions
the understanding of basic concepts and the function concept in particular
in Chapter 7. Complementary to my focus on the informal aspects of
computer science, Boute advocates elementary use of symbolism to
support the textual definitions at hand. I believe next generations of
formal methodists can benefit greatly from reading Chapter 7.

Endnotes

T wrote most of Chapters 2 and 3 a few years ago and the careful
scholar will observe that some statements made in the endnotes
exemplify category mistakes. I think it is instructive to keep these
mistakes in the first edition of the present book.

ZParaphrasing Michael Jackson [193, p. 51].
3See my blog post on Michael Mahoney [99].

4See McCarthy’s recollections [239, p.191] and Herbert Stoyan’s
historiography [308].

°It should also be noted that the Turing machine model of computa-
tion has been over sold by computer scientists [35] and historians [99]
alike. But only in future work will I attempt to rectify this situation in a
more direct manner; e.g., by focusing on the legacy of Alonzo Church
and the topic of types in programming languages [237], and e.g., by
scrutinizing the relationship between reasoning and computing [116].

It should perhaps also be remarked that the technicalities in the
present edition of this book make it less accessible for some fellow
historians, which I regret and hope to remedy in the future.

6Sources: Copeland [76, p.3], Davis [90, p.147,166], and Hodges [183,
p-1994]. For a further discussion, see the present author’s paper ‘A
Turing Tale’ [101].

Paraphrasing Parnas, based on private correspondence with the
present author in early August 2016.

81 have written that “several prominent computer scientists ...

201

202

actually believe ...” This statement is based on my own research and on
the many examples provided in the writings of Timothy Colburn [72]
and Donald MacKenzie [233].

9Details are provided in Chapter 6 along with the following definition:
a mathematical language is Turing complete when it is able to express all
partially computable functions [333, p.539].

0Three remarks are in order. First, to be more precise, the diagonal
argument can be applied only to mathematical objects if one wants to
maintain the claim that one is using the argument in a mathematical
proof.

7

Second, no harm is done in hijacking the term “computer program”
and using it as a synonym for a “mathematical program,” but only as
long as one does so (a) consistently and (b) without claiming that the
obtained result is an absolute claim about technology.

Third, and for the sociological record only, it should be noted that
the reviews received from the CACM are much more elaborate than those
from POPL. The CACM reviews convey more how each reviewer thinks
and are several pages long. In retrospect, this is perhaps to be expected;
the CACM is after all a journal, while POPL is an annual conference with a
well-defined scope of research.

'Two remarks. First, Strachey was passionate about the lambda
calculus rather than Turing machines, but this observation is less relevant
for the purpose of the present book. Second, I refer to my oral histories
with Naur and Jackson for more coverage on their views [96, 193].

12 consistently follow Turner in writing “artefact” (British English)
instead of “artifact” (American English) even though the rest of this book
is written in American English.

131 am particularly grateful to Thomas Haigh for his written and oral
feedback on multiple drafts of this chapter, starting in the spring of
2013. I also thank Nancy R. Miller and J.M. Duffin of the University of
Pennsylvania Archives and Jos Baeten of the ‘Centrum voor Wiskunde
& Informatica’ for funding my visit to the Archives.

4The minutes of that meeting state:

Bright reported that the Program Committee recommends
that the National ACM Lecture be named the Allen [sic] M.
Turing Lecture.

Bibliography

(1]

(2]

(3]

[4]
[5]

[6]
[7]

(8]

[9]

(10]

(11]

(12]

ACM Council Meeting (1965). Available from the “Saul Gorn
Papers”, the University of Pennsylvania Archives (unprocessed
collection).

ACM Council Meeting (1966). Available from the “Saul Gorn
Papers”, the University of Pennsylvania Archives (unprocessed
collection).

ACM Council Meeting (1966). Available from the “Saul Gorn
Papers”, the University of Pennsylvania Archives (unprocessed
collection).

A. Akera. “Anthony Oettinger interview: January 10-11, 2006”.
In: ACM Oral History interviews. 2006.

A. Akera. Calculating a Natural World: Scientists, Engineers, and
Computers During the Rise of U.S. Cold War Research. Cambridge,
Massachusetts, USA: MIT Press, 2007.

G. Alberts. “Jaren van berekening”. PhD thesis. Universiteit van
Amsterdam, 1998.

G. Alberts and H.T. de Beer. “De AERA. Gedroomde machines
en de praktijk van het rekenwerk aan het Mathematisch Centrum
te Amsterdam”. In: Studium 2 (2008), pp. 101-127.

G. Alberts and E.G. Daylight. “Universality versus Locality: the
Amsterdam Style of ALGOL Implementation”. In: IEEE Annals of
the History of Computing 4 (2014), pp. 52-63.

P. Alevoor, P. Saeda, and K. Kapoor. “On the decidability and
matching issues for regex languages”. In: International Conference
on Advances in Computing. Ed. by M.A. Kumar, R. Selvarani, and
T.V.S. Kumar. Springer Verlag, 2012, pp. 137-145.

EL. Alt. Electronic Digital Computers: Their Use in Science and
Engineering. New York, NY, USA: Academic Press, 1958.

EL. Alt. “Archaeology of Computers — Reminiscences, 1945—
1947”. In: Communications of the ACM 15.7 (1972), pp. 693-694.
T.M. Apostol. Calculus, Vol. I (2nd. ed.) Wiley, 1967.

221

222

BIBLIOGRAPHY

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

A. Appel. The science of deep specification (http:/ /deepspec.org/
research/). Accessed on September 25th, 2016.

A. Appel. Turing, Godel, and Church at Princeton in the 1930s.
YouTube: www.youtube.com/watch?v=kO-8RteMwfw. Presen-
tation at the Turing Centennial Celebration at Princeton, 10-12
May 2012.

V.I. Arnold. On Teaching Mathematics. This is an extended text
of the address at the discussion on teaching of mathematics in
Palais de Decouverte in Paris on 7 March 1997 (http:/ /pauli.uni-
muenster.de/~munsteg/arnold.html). 1997.

J. Backus. “Can programming be liberated from the von Neu-
mann style?” In: Communications of the ACM 21.8 (1978), pp. 613—
641.

J. Backus. “The History of FORTRAN I, II, and III”. In: ACM
SIGPLAN Notices 13 (1978), pp- 165-180.

J. Backus, J. Williams, and E. Wimmers. “An introduction to
the programming language FL”. In: Research Topics in Functional
Programming. Ed. by D.A. Turner. Addison-Wesley, 1990, pp. 219-
247.

J.W. Backus. “The syntax and semantics of the proposed in-
ternational algebraic language of the Ziurich ACM-GAMM
Conference”. In: IFIP Congress. UNESCO, Paris. 1959, pp. 120-125.

J.W. Backus, FL. Bauer, . Green, C. Katz,]. McCarthy, A.]. Perlis,
H. Rutishauser, K. Samelson, B. Vauquois,].H. Wegstein, A.
van Wijngaarden, and M. Woodger. “Report on the algorithmic
language ALGOL 60”. In: Communications of the ACM 3.5 (1960).
Editor: P. Naur, pp. 299-314.

J.W. Backus, FL. Bauer, J. Green, C. Katz, J. McCarthy, A J. Perlis,
H. Rutishauser, K. Samelson, B. Vauquois,].H. Wegstein, A. van
Wijngaarden, M. Woodger, and P. Naur. “Revised report on the
algorithmic language ALGOL 60”. In: Communications of the ACM
6.1 (1963), pp. 1-17.

P.R. Bagley. Letter to Mort Bernstein. From the Charles Babbage
Institute collections. Thanks to David Nofre for giving me a copy
of this letter. 1960.

PR. Bagley. Letter to the SHARE UNCOL Committee and other
interested parties, 26 May 1960. From the Charles Babbage Institute
collections. Thanks to David Nofre for giving me a copy of this
letter. 1960.

T.P. Baker and A.C. Fleck. “A Note on Pascal Scopes”. In: Pascal
News 17 (1980), p. 62.

BIBLIOGRAPHY 223

(25]

(26]

(27]

(28]
[29]

(30]

(31]

(32]

(33]

(34]
(35]

(36]
(37]

(38]

(39]

T.P. Baker and A.C. Fleck. “Does Scope = Block in Pascal?” In:
Pascal News 17 (1980), pp. 60-61.

Y. Bar-Hillel. Language and Information: Selected Essays on their
Theory and Application. Reading, Massachusetts and Jerusalem,
Israel: Addison-Wesley Publishing Company, Inc. and the
Jerusalem Academic Press Ltd, 1964.

Y. Bar-Hillel, M. Perles, and E. Shamir. “On formal prop-
erties of simple phrase structure grammars”. In: Zeitschrift
fiir Phonetik, Sprachwissenschaft und Kommunikationsforschung 14
(1961), pp. 143-172.

R.G. Bartle. The Elements of Real Analysis. Wiley, 1964.

C. Gordon Bell and A. Newell. Computer Structures: Readings and
Examples. New York, USA: McGraw Hill, 1971.

R.W. Bemer. “The Status of Automatic Programming for Scientific
Problems”. In: The Fourth Annual Computer Applications Sympo-
sium, October 24-25, 1957. Ed. by F.C. Bock. Armour Research
Foundation of Illinois Institute of Technology, 1958, pp. 107-117.

E.C. Berkeley. Giant Brains, or Machines That Think. New York:
Wiley, 1949.

E.C. Berkeley. Memorandum for the Association for Computing
Machinery — Committee on the Social Responsibilities of Computer
Scientists. Tech. rep. 1958. Available from the “Saul Gorn Papers"
from the University of Pennsylvania Archives (unprocessed
collection): UPT 50 G671 Box 3.

E. Berkers and E.G. Daylight. De geest van de computer: Een
geschiedenis van software in Nederland. ISBN 978-90-5345-504-3.
Uitgeverij Matrijs, 2016.

R. Bird and O. de Moor. Algebra of Programming. Prentice Hall,
1997.

G.E. Blelloch and R. Harper. “A-Calculus: The Other Turing
Machine”. In: CMU CSD Fiftieth Anniversary volume. 2015.

E. Bloch. Proofs and Fundamentals. Springer, 2011.

J. Bloem. “Gerrit Blaauw: Van ‘rekenmachines’ die het doen naar
computerarchitectuur”. In: Informatie (2006).

D.G. Bobrow and B. Raphael. “A comparison of list-processing
languages: including a detailed comparison of COMIT, IPL-
V, LISP 1.5, and SLIP”. In: Communications of the ACM (1964),
pp. 231-240.

A.van den Bogaard. “Stijlen van Programmeren 1952-1972". In:
Studium 2 (2008), pp. 128-144.

224

BIBLIOGRAPHY

[40]
[41]
[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]
[53]

[54]

C. Bohm and G. Jacopini. “Flow diagrams, Turing machines, and
languages with only two formation rules”. In: Communications of
the ACM 9.5 (May 1966), pp. 366-371.

A.D. Booth and K.H.V. Booth. Automatic Digital Calculators.
second. London, UK: Butterworths Scientific Publications, 1956.

N. Bourbaki. Théorie des ensembles. Hermann & ci¢, 1954.

R. Boute. “Concrete Generic Functionals”. In: Generic Program-
ming. Ed. by Jeremy Gibbons and Johan Jeuring. Kluwer, 2003,
pp. 89-119.

R. Boute. Rekindling critical thinking: heeding major errors in
current Introduction to Proof type textbooks. http:/ /www.funmath
.be/CriTnk.pdf. Contributed paper session, MAA Mathfest 2015.
2015.

R. Boute. “Why mathematics needs engineering”. In: Journal of
Logical and Algebraic Methods in Programming 85.5, part 2 (2016).
http:/ /dx.doi.org/10.1016/j.jlamp.2016.01.001, pp. 867-878.
R.T. Boute. “System Semantics and Formal Circuit Description”.
In: IEEE Transactions on Circuits and Systems CAS-33.12 (1986),
pp. 1219-1231.

R.T. Boute. “Systems Semantics: Principles, Applications, and
Implementation”. In: ACM Transactions on Programming Languages
and Systems 10.1 (1988), pp. 118-155.

B.W. Bowden, ed. Faster Than Thought: A Symposium on Digital
Computing Machines. London: Sir Isaac Pitman & Sons, Ltd., 1953.

J.M. Boyle and A.A. Grau. “An algorithmic semantics for ALGOL
60 identifier denotation”. In: Journal of the ACM 17 (1970), pp. 361-
382.

J. Brown and J.W. Carr III. “Automatic Programming and its
Development on the MIDAC”. In: Symposium on Automatic
Programming for Digital Computers. Office of Naval Research,
Department of the Navy. Washington D.C., 1954, pp. 84-97.
N.G. de Bruijn. Verslag inzake onderzoek betreffende electronische en
electrische rekenapparatuur over het cursusjaar 1947/48. Tech. rep.
Delft, 1948.

T. Budd. A Little Smalltalk. Addison-Wesley, 1987.

M. Bullynck. “Programming primes (1968-1976)". In: History and
Philosophy of Logic 36 (2015), pp. 229-241.

A W. Burks. “Turing’s Theory of Infinite Computing Machines
(1936-1937) and its Relation to the Invention of Finite Electronic
Computers (1939-1949)”. In: Theory and Practical Issues on Cellular

BIBLIOGRAPHY 225

[55]

[56]

[59]

[60]

[61]

[62]

[63]

[64]

[65]
[66]
[67]

[68]

Automata. Ed. by S. Bandini and T. Worsch. London Berlin
Heidelberg: Springer, 2001, pp. 179-197.

A.W. Burks. “The invention of the universal electronic computer—
how the Electronic Computer Revolution began”. In: Future
Generation Computer Systems 18 (2002), pp. 871-892.

M. Campbell-Kelly. “Alan Turing’s Other Universal Machine:
Reflections on the Turing ACE computer and its influence”. In:
Communications of the ACM 55.7 (2012), pp. 31-33.

M. Campbell-Kelly and W. Aspray. Computer: A History of the
Information Machine. New York, NYY, USA: Basic Books, 1996.

C. Campeanu, K. Salomaa, and S. Yu. “A formal study of practical
regular expressions”. In: International Journal of Foundations of
Computer Science 14 (2003), pp. 1007-1018.

J-W. Carr. Inaugural Presidential Address. Presented at the meeting
of the Association. 1956.

J.W. Carr. Computing Programming and Artificial Intelligence. Ann
Arbor, University of Michigan. An intensive course for practicing
scientists and engineers: lectures given at the University of
Michigan. 1958.

J.W. Carr. “Programming and Coding”. In: Handbook of Automa-
tion, Computation, and Control: Computers and Data Processing. Ed.
by E.M. Grabbe, S. Ramo, and D.E. Wooldridge. Vol. 2. New York:
John Wiley and Sons, Inc., 1959. Chap. 2.

G. Chartrand, A. Polimeni, and P. Zhang. Mathematical Proofs: A
Transition to Advanced Mathematics (3rd. ed.) Pearson, 2012.

S. Chaudhuri, A. Farzan, and Z. Kincaid. “Consistency Anal-
ysis of Decision-Making Programs”. In: Proceedings of the 41st
ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages. 2014, pp. 555-567.

S. Chaudhuri, S. Gulwani, and R. Lublinerman. “Continuity &
Robustness of Programs”. In: Communications of the ACM 55.8
(2012), pp. 107-115.

N. Chomsky. “Transformational Analysis”. PhD thesis. Univer-
sity of Pennsylvania, 1955.

N. Chomsky. “Three models for the description of language”. In:
L.R.E. Trans. on Information Theory IT-2 (1956), pp. 113-123.

N. Chomsky. Syntactic Structures. The Hague/Paris: Mouton,
1957.

N. Chomsky. “On certain formal properties of grammars”. In:
Information and Control 2 (1959), pp. 137-167.

226

BIBLIOGRAPHY

[69]
[70]
[71]
[72]

[73]

[74]

[75]
[76]

[77]

[78]
[79]
[80]
[81]

[82]

[83]

[84]

[85]

[86]

A. Church. “A set of postulates for the foundation of logic”. In:
Annals of Mathematics 2 (1932-33), pp. 33-34, 346-366, 839-864.

F. Cohen. “Computer Viruses: Theory and Experiments”. In:
Computers and Security 6.1 (1987), pp. 22-35.

I. Bernard Cohen. Howard Aiken: Portrait of a Computer Pioneer.
MIT Press, 1999.

T.R. Colburn. Philosophy and Computer Science. Ed. by J.H. Fetzer.
M.E. Sharpe, 2000.

A. Colmerauer and P. Roussel. “The birth of Prolog”. In: History of
Programming Languages — II. Ed. by T.]. Bergin Jr. and R.G. Gibson
Jr. ACM Press, 1996, pp. 331-367.

B. Cook, A. Podelski, and A. Rybalchenko. “Proving Program
Termination”. In: Communications of the ACM 54.5 (May 2011),
pp. 88-98.

S.B. Cooper. “Incomputability after Alan Turing”. In: Notices of
the AMS 59.6 (2012), pp. 776-784.

B. Jack Copeland. Turing: Pioneer of the Information Age. Oxford,
UK: Oxford University Press, 2012.

H.B. Curry. On the Composition of Programs for Automatic Com-
puting. Memorandum 9806. Silver Spring, Maryland: Naval
Ordnance Laboratory, 1949.

H.B. Curry and R. Feys. Combinatory Logic. Volume I. Amsterdam:
North-Holland, 1958.

U. Daepp and P. Gorkin. Reading, Writing and Proving: a Closer
Look at Mathematics. Springer, 2003.

U. Daepp and P. Gorkin. Reading,Writing and Proving: a Closer
Look at Mathematics (2nd. ed.) Springer, 2011.

O.-J. Dahl, E.W. Dijkstra, and C.A.R. Hoare. Structured Program-
ming. London/New York: Academic Press, 1972.

O.-J. Dahl, B. Myhrhaug, and K. Nygaard. The SIMULA 67
common base language. Tech. rep. Norwegian Computing Center,
Oslo, 1968.

O.-J. Dahl and K. Nygaard. “SIMULA—an ALGOL-based
simulation language”. In: Communications of the ACM 9.9 (1966),
pp- 671-678.

A. Dasgupta. Set Theory. Birkhduser, 2014.

S. Dasgupta. Computer Science: A Very Short Introdcution. Oxford
University Press, 2016.

M. Davis. Computability and Unsolvability. New York, USA:
McGraw-Hill, 1958.

BIBLIOGRAPHY 227

(87]

(88]
(89]
[90]

[91]

[92]

(93]

[94]

[95]

[96]

[97]

(98]

[99]
[100]

[101]

M. Davis. “Mathematical Logic and the Origin of Modern
Computers”. In: The Universal Turing Machine - A Half-Century
Survey. Ed. by R. Herken. Originally in: Studies in the History of
Mathematics. Mathematical Association of America, 1987, pages
137-165. Wien: Springer, 1988, pp. 135-158.

M. Davis. Engines of Logic: Mathematicians and the origins of the
Computer. first. New York NY: WW. Norton & Company, 2000.

M. Davis. The Universal Computer: The Road from Leibniz to Turing.
first. Florida: Norton, 2000.

M. Davis. The Universal Computer: The Road from Leibniz to Turing.
second. CRC Press, 2012.

M. Davis. Universality is Ubiquitous. YouTube: www.youtube.com/
watch?v=ZVTgtODX0Nc. Presentation at the Turing Centennial
Celebration at Princeton, 10-12 May 2012. 2012.

M. Davis, R. Sigal, and E.]. Weyuker. Computability, Complexity,
and Languages: Fundamentals of Theoretical Computer Science.
second. Morgan Kaufmann, 1994.

E.G. Daylight. Interview with Van der Poel in February 2010,
conducted by Gerard Alberts, David Nofre, Karel Van Oudheusden,
and Jelske Schaap. Tech. rep. 2010.

E.G. Daylight. “Dijkstra’s Rallying Cry for Generalization: the
Advent of the Recursive Procedure, late 1950s — early 1960s”. In:
The Computer Journal 54.11 (2011), pp. 1756-1772.

E.G. Daylight. Interview with Blaauw on 29 November 2011,
conducted by Gerard Alberts and Karel Van Oudheusden. Tech. rep.
2011.

E.G. Daylight. Pluralism in Software Engineering: Turing Award
Winner Peter Naur Explains. Ed. by K. De Grave. Heverlee: Lonely
Scholar, 2011.

E.G. Daylight. “A Hard Look at George Dyson’s Book “Turing’s
Cathedral: the Origins of the Digital Universe””. In: Turing in
Context II. Lecture available on video: www.dijkstrascry.com/
presentations. 2012.

E.G. Daylight. The Dawn of Software Engineering: from Turing
to Dijkstra. Ed. by K. De Grave. See: www.lonelyscholar.com.
Heverlee: Lonely Scholar, 2012.

E.G. Daylight. On Mahoney’s Accounts of Turing. 2013.

E.G. Daylight. Turing’s 1936 Paper and the First Dutch Computers.
Communications of the ACM. 2013.

E.G. Daylight. “A Turing Tale”. In: Communications of the ACM
57.10 (2014), pp. 36-38.

228

BIBLIOGRAPHY

[102]

[103]

[104]

[105]

[106]
[107]

[108]

[109]

[110]

[111]

[112]
[113]
[114]

[115]

E.G. Daylight. “Towards a Historical Notion of “Turing — the
Father of Computer Science’”. In: History and Philosophy of Logic
36.3 (2015), pp. 205-228.

E.G. Daylight and S. Nanz, eds. The Future of Software Engineering:
Panel discussions, 22—23 November 2010, ETH Zurich. Conversa-
tions. www.lonelyscholar.com. Heverlee: Lonely Scholar, Oct.
2011.

E.G. Daylight, A. Vandecappelle, and F. Catthoor. “The Formal-
ism Underlying EASYMAP: a Precompiler for Refinement-Based
Exploration of Hierarchical Data Organizations”. In: Science of
Computer Programming 72.3 (Aug. 2008), pp. 71-135.

T.J. Dekker, E.W. Dijkstra, and A. van Wijngaarden. Cursus pro-
grammeren voor automatische rekenmachines. Tech. rep. Amsterdam:
MCR:CR-9, 1957.

E.W. Dijkstra. Functionele beschrijving van de ARRA. Tech. rep. MR
12. Mathematisch Centrum Amsterdam, 1953.

E.W. Dijkstra. Communication with an Automatic Computer. Acade-
misch Proefschrift. Universiteit van Amsterdam, Oct. 1959.

E.W. Dijkstra. “An Attempt to Unify Constituent Concepts of Se-
rial Program Execution”. In: Proceedings of the Symposium Symbolic
Languages in Data Processing. London/New York: Gordon and
Breach Science Publishers, 1962, pp. 237-251.

E.W. Dijkstra. “GOTO Statement Considered Harmful”. In:
Letters to the Editor, Communications of the ACM 11 (1968),
pp. 147-148.

E.W. Dijkstra. EWD 249: Notes on structured programming. Tech.
rep. Technische Hogeschool Eindhoven, 1969.

E.W. Dijkstra. Notes on Structured Programming. Tech. rep. T.H.-
Report 70-WSK-03. Second edition. Published as Chapter 1 of
[81]. Technische Hogeschool Eindhoven, Apr. 1970.

E.W. Dijkstra. EWD 372: A simple axiomatic basis for programming
language constructs. Tech. rep. 1973.

E.W. Dijkstra. A Discipline of Programming. Englewood Cliffs, N.J.:
Prentice-Hall, 1976.

E.W. Dijkstra. EWD 1166: From my Life. Tech. rep. The University
of Texas at Austin, 1993.

PJ. van Donselaar. De ontwikkeling van electronische rekenmachines
in Nederland; een historisch overzicht van Nederlandse computers.
Tech. rep. Amsterdam: Rapport Stichting Studiecentrum voor
Administratieve Automatisering en Bestuurlijke Informatiever-
werking, 1967.

BIBLIOGRAPHY 229

[116]
[117]
[118]

[119]

[120]

[121]
[122]

[123]

[124]
[125]
[126]
[127]
[128]
[129]
[130]

[131]

[132]

[133]

G. Dowek. Computation, Proof, Machine: Mathematics Enters a New
Age. Cambridge University Press, 2015.

G. Dyson. Turing’s Cathedral: The Origins of the Digital Universe.
London: Penguin Books, 2012.

E.A. Emerson. “25 Years of Model Checking”. In: The Beginning of
Model Checking: A Personal Perspective. Springer, 2008, pp. 27—45.

U. Erlingsson, Y. Younan, and F. Piessens. “Low-Level Software
Security by Example”. In: Handbook of Information and Communica-
tion Security. Ed. by P. Stavroulakis and M. Stamp. Springer, 2010,
pp. 633-658.

G.R. Exner. An Accompaniment to Higher Mathematics. Springer,
1997.

A.D. Falkoff and K.E. Iverson. APL\360: User’s Manual, IBM, 1968.

A.D. Falkoff and K.E. Iverson. “The Evolution of APL”. In: ACM
SIGPLAN Notices 13 (1978), pp. 47-57.

D.J. Farber, R.E. Griswold, and I.P. Polonsky. “SNOBOL, A String
Manipulation Language”. In: Journal of the ACM 11 (1964), pp. 21-
30.

M. Fernandez. Models of Computation: An Introdcution to Com-
putability Theory. London: Springer, 2009.

J.H. Fetzer. “Program Verification: The Very Idea”. In: Communi-
cations of the ACM 31.9 (1988), pp. 1048-1063.

E. Filiol. Computer Viruses: from theory to applications. Springer,
2005.

A.C. Fleck. “Isomorphism groups of automata”. In: Journal of the
ACM 9 (1962), pp. 469—476.

A.C. Fleck. “Algebraic structure of automata”. PhD thesis.
Michigan State University Library, 108 286 THS, 1964.

A.C. Fleck. “On the automorphism group of an automaton”. In:
Journal of the ACM 12 (1965), pp. 566-569.

A.C. Fleck. “Towards a theory of data structures”. In: Journal of
Computer and System Sciences 5 (1971), pp. 475-488.

A.C. Fleck. “On the impossibility of content exchange through
the by-name parameter transmission mechanism”. In: SIGPLAN
Notices 11 (1976), pp. 38—41.

A.C. Fleck. “Formal models for string patterns”. In: Current Trends
in Programming Methodology, Volume IV: Data Structuring. Ed. by
R. Yeh. Prentice-Hall, 1978, pp. 216-240.

A.C. Fleck. “Verifying abstract data types with SNOBOL4”. In:
Software — Practice and Experience 12 (1982), pp. 627-640.

230

BIBLIOGRAPHY

[134]

[135]

[136]

[137]

[138]

[139]

[140]
[141]

[142]

[143]

[144]
[145]

[146]

[147]
[148]

[149]

A.C. Fleck. “A proposal for the comparison of types in Pascal and
associated semantic models”. In: Computer Languages 9.2 (1984),
pp. 71-87.

A.C. Fleck. “Structuring FP-style functional programs”. In:
Computer Languages 11 (1986), pp. 55-63.

A.C. Fleck. “A case study comparison of four declarative
programming languages”. In: Software — Practice and Experience
20 (1990), pp. 49-66.

A.C. Fleck. “Specifying and proving object-oriented programs”.
In: 2004 Hawaii International Conference on Computer Sciences. 2004,
pp- 190-206.

A.C. Fleck. “Prolog as the first programming language”. In: ACM
SIGCSE Bulletin 39 (2007), pp. 61-64.

A.C. Fleck and R.S. Limaye. “Formal semantics and abstract
properties of string pattern operations and extended formal lan-
guage description mechanisms”. In: SIAM Journal on Computing
12 (1983), pp. 166-188.

T.M. Flett. Mathematical Analysis. McGraw-Hill, 1966.

R.W. Floyd. “The syntax of programming languages—A survey”.

In: IEEE Transactions on Electronic Computers EC-13.4 (1964),
pp- 346-353.

M. Franssen, G. Lokhorst, and I. Poel. “Philosophy of technol-
ogy”. In: Stanford Encyclopedia of Philosophy. http:/ / plato.stanford
.edu/entries /technology, 2009.

D.D. Freydenberger. “Extended regular expressions: succinctness
and decidability”. In: Theory of Computing Systems 53 (2013),
pp- 159-193.

J.E.F. Friedl. Mastering Regular Expressions. 3rd ed. O'Reilly Media,
Inc., 2006.

R. Frigg. “Models and fiction”. In: Synthese 172 (2009), pp. 251-
268.

M.R. Garey and D.S. Johnson. Computers and Intractability: A Guide
to the Theory of NP-Completeness. W.H. Freeman and Company,
1979.

R. Garnier and J. Taylor. Discrete Mathematics — Proofs, Structures
and Applications. CRC Press, 2010.

L. Gerstein. Introduction to Mathematical Structures and Proofs (2nd.
ed.) Springer, 2012.

L. Gilbert and J. Gilbert. Elements of Modern Algebra (7th. ed.)
Cengage Learning, 2008.

BIBLIOGRAPHY 231

[150]
[151]

[152]

[153]

[154]

[155]

[156]

[157]

[158]

[159]

[160]

[161]

S. Ginsburg. “On the reduction of superfluous states in sequential
machines”. In: Journal of the ACM 6 (1959), pp. 259-282.

S. Ginsburg and H. Gordon Rice. “Two Families of Languages
Related to ALGOL". In: Journal of the ACM 9.3 (1962), pp. 350-371.

V.E. Giuliano and A.G. Oettinger. “Research on automatic trans-
lation at the Harvard Computation Laboratory”. In: Information
processing: proceedings of the International Conference on Information
Processing. Unesco, Paris. 1959.

J.A. Goguen. “Some design principles and theory for OBJ-0, a
language for expressing and executing algebraic specifications of
programs”. In: Mathematical Studies of Information Processing. Ed.
by E. Blum, M. Paul, and S. Takasu. LNCS V.75. Springer-Verlag,
1979, pp. 425-473.

J.LA. Goguen, J.W. Thatcher, E.G. Wagner, and].B. Wright.
“Abstract data-types as initial algebras and correctness of data
representations”. In: Computer Graphics, Pattern Recognition and
Data Structure. 1975, pp. 89-93.

A. Goldberg and D. Robson. Smalltalk-80: the language and its
implementation. Addison-Wesley, 1983.

E.G. Goodaire and M.M. Parmenter. Discrete Mathematics with
Graph Theory (3rd. ed.) Pearson Prentice Hall, 2006.

R. Goodman, ed. Annual Review in Automatic Programming I:
Papers read at the Working Conference on Automatic Programming of
Digital Computers held at Brighton, 1-3 April 1959. New York, USA:
Pergamon Press, 1960.

S. Gorn. “Planning Universal Semi-Automatic Coding”. In:
Symposium on Automatic Programming for Digital Computers. Office
of Naval Research, Department of the Navy. Washington D.C,,
May 1954, pp. 74-83.

S. Gorn. Real Solutions Of Numerical Equations By High Speed
Machines. Tech. rep. 966. Available from the “Saul Gorn Papers”
from the University of Pennsylvania Archives (unprocessed
collection). Ballistic Research Laboratories, 1955.

S. Gorn. “Standardized Programming Methods and Universal
Coding”. In: Journal of the ACM (July 1957). Received in December
1956.

S. Gorn. Common Programming Language Task, Final Report: Report
of the work in the period 1 May 1958 to 30 June 1959. Tech. rep.
ADS59URI. Available from the “Saul Gorn Papers” from the
University of Pennsylvania Archives (unprocessed collection):
UPT 50 G671 Box 39. 1959.

232

BIBLIOGRAPHY

[162]

[163]

[164]

[165]

[166]
[167]

[168]

[169]

[170]
[171]

[172]
[173]
[174]

[175]
[176]

[177]

[178]

S. Gorn and W. Manheimer. The electronic brain and what it can do.
Ed. by PF. Brandwein. Chicago, Illinois, USA: Science Research
Associates, Inc., 1956.

E.M. Grabbe, S. Ramo, and D.E. Wooldridge, eds. Handbook
of Automation, Computation, and Control: Computers and Data
Processing. Vol. 2. New York: John Wiley and Sons, Inc., 1959.

D. Gries and EB. Schneider. A Logical Approach to Discrete Math.
Springer, 1993.

R.E. Griswold. “History of Programming Languages”. In: ACM
Press, 1981. Chap. A history of the SNOBOL programming
languages, pp. 601-645.

R.E. Griswold, J.E. Poage, and LP. Polonsky. The SNOBOL4
Programming Language. Prentice-Hall, 1968.

R.E. Griswold, J.E Poage, and LP. Polonsky. The SNOBOL4
Programming Language. 2nd ed. Prentice-Hall, 1971.

J.V. Guttag, E. Horowitz, and D.R. Musser. “The design of data
type specifications”. In: ICSE'76: 2nd International Conference on
Software Engineering. IEEE, 1976, pp. 414-430.

J.V. Guttag, E. Horowitz, and D.R. Musser. “Abstract data types
and software validation”. In: Communications of the ACM 21 (1978),
pp- 1048-1063.

T. Haigh, M. Priestley, and C. Rope. ENIAC in Action. MIT Press,
2016, p. 360.

PR. Halmos. “Nicolas Bourbaki”. In: Scientific American 196.5
(1957), pp- 88-99.

PR. Halmos. Naive Set Theory. Van Nostrand Reinhold, 1960.

R. Hammack. Book of Proof. CC BY-ND, 2009.

D. Harel. The Science of Computing: Exploring the Nature and Power
of Algorithms. Addison-Wesley, 1987, 1989.

LN. Herstein. Topics in Algebra. Xerox College Publishing, 1964.
M. Hicks. How did Heartbleed remain undiscovered, and what
should we do about it? This post is dated "July 1st, 2014" and I
accessed it on September 19th, 2016. URL: http :/ /www . pl -
enthusiast.net/2014/07/01/how-did-heartbleed-remain-
undiscovered-and-what-should-we-do-about-it/.

C.AR. Hoare. “Record handling”. In: ALGOL Bulletin 21 (1965),
pp- 39-69.

C.AR. Hoare. “An Axiomatic Basis for Computer Programming”.
In: Communications of the ACM 12.10 (1969), pp- 576-580.

BIBLIOGRAPHY 233

[179]
[180]
[181]
[182]
[183]
[184]
[185)
[186]
[187]
[188]
[189]
[190]

[191]

[192]
[193]
[194]
[195]

[196]

C.A.R. Hoare. “Proof of correctness of data representations”. In:
Acta Informatica 1 (1972), pp. 271-281.

C.A.R. Hoare. “The Emperor’s Old Clothes”. In: Communications
of the ACM 24.2 (1981), pp. 75-83.

C.AR. Hoare and D.C.S. Allison. “Incomputability”. In: ACM
Computing Surveys 4.3 (1972), pp. 169-178.

A. Hodges. Alan Turing: The Enigma. London: Burnett Books,
1983.

A. Hodges. “Book Review: The Essential Turing”. In: Notices of
the AMS 53.10 (2006), pp. 1190-1199.

G. van den Hove. “On the Origin of Recursive Procedures”. In:
The Computer Journal 58.11 (2015), pp. 2892-2899.

R.K.W. Hui, K.E. Iverson, E.E. McDonnell, and A.T. Whitney.
“APL\?” In: APL1990. 1990, pp. 192-200.

Yu. L. Ianov. “On the equivalence and transformation of program
schemes”. In: Doklady Aka. Nauk S.5.S.R. 113 (1957), pp. 39-42.
IBM, 650 Magnetic Drum Data-Processing Machine Manual of
Operation, Form 22-6060-1, 1955.

IBM, Programmer’s Reference Manual (for the) Fortran Automatic
Coding System for the IBM704, 1956.

IEEE Standard Pascal Computer Programming Language, ANSI/IEEE
X3.97-1983. American National Standards Institute, Inc., 1983.
N. Irmak. “Software is an Abstract Artifact”. In: Grazer Philosophi-
sche Studien 86 (2012), pp. 55-72.

ISO/IEC. Quantities and units — Part 2: Mathematical signs and
symbols to be used in the natural sciences and technology (ISO 80000-
2).ISO/IEC, 2009.

K.E. Iverson. A Programming Language. New York: John Wiley
and Sons, Inc., 1962.

M.A. Jackson and E.G. Daylight. Formalism and Intuition in
Software Development. Ed. by K. De Grave. Geel: Lonely Scholar,
2015.

T. Jech. Set Theory. Springer, 2003.

K. Jensen and N. Wirth. Pascal User Manual and Report. Springer-
Verlag, 1974.

R.T. Johnson and J.B. Morris. “Abstract data types in the MODEL
programming language”. In: SIGPLAN Notices 11 (1976), pp. 36—
46.

234

BIBLIOGRAPHY

[197]
[198]
[199]

[200]

[201]

[202]

[203]

[204]

[205]

[206]

[207]
[208]
[209]
[210]
[211]
[212]

[213]

A.A. Markov Jr. Theory of Algorithms. Vol. 42. Trudy Matema-
ticheskogo Instituta imeni V. A. Steklova. Moscow /Leningrad:
Academy of Sciences of the USSR, 1954.

Jsoftware Inc., http://www.jsoftware.com.

D. Kahn. The Codebreakers: The Story of Secret Writing. New York:
The Macmillan Company, 1967.

L.V. Kantorovich. “On a mathematical symbolism convenient for
performing machine calculations”. In: Doklady Aka. Nauk S.S.S.R.
113 (1957), pp. 738-741.

A.C. Kay. “The early history of Smalltalk”. In: History of
Programming Languages — 11. Ed. by T.]. Bergin Jr. and R.G. Gibson
Jr. ACM Press, 1996, pp. 511-598.

S.C. Kleene. Introduction to Metamathematics. Princeton, New
Jersey, USA: Van Nostrand, 1952.

S.C:. Kleene. “Representation of events in nerve nets and finite
automata”. In: Automata Studies. Ed. by C.E. Shannon and J.
McCarthy. Princeton University Press, 1956, pp. 3—42.

G. Klein et al. “seL4: Formal Verification: of an OS Kernel”. In:
SOSP. 2009.

D.E. Knuth. “The remaining trouble spots in ALGOL 60”. In:
Communications of the ACM 10 (1967), pp. 611-618. Reprinted
with corrections and an addendum in [209].

D.E. Knuth. “Semantics of Context-Free Languages”. In: Mathe-
matical Systems Theory 2 (1968), pp. 127-145. Reprinted with
corrections and an addendum in [209].

D.E. Knuth. “Literate Programming”. In: The Computer Journal 27
(1984), pp. 97-111. Reprinted as Chapter 4 of [208].

D.E. Knuth. Literate Programming. Vol. 27. CSLI Lecture Notes.
Stanford, California: CSLI Publications, 1992.

D.E. Knuth. Selected Papers on Computer Languages. Vol. 139. CSLI
Lecture Notes. Stanford, California: CSLI Publications, 2003.
D.E. Knuth and E.G. Daylight. Algorithmic Barriers Falling: P=NP?
Ed. by K. De Grave. Geel: Lonely Scholar, 2014.

A.L. Kolmogorov and S.V. Fomin. Introductory Real Analysis.
Dover, 1970.

E. Kranakis. “Early Computers in The Netherlands”. In: CWI-
Quarterly (), pp. 61-274.

S.G. Krantz. Real Analysis and Foundations. Chapman & Hall /CRC,
2005.

BIBLIOGRAPHY 235

[214]
[215]
[216]
[217]
[218]
[219]
[220]
[221]
[222]
[223]
[224]

[225]

[226]

[227]

[228]

[229]

[230]

[231]

D. Kroening and O. Strichman. Decision Procedures: An Algorithmic
Point of View. Springer, 2008.

P. Kroes. “Engineering and the dual nature of technical artefacts”.
In: Cambridge Journal of Economics 34 (2010), pp. 51-62.

L. Lamport. Specifying Systems — The TLA+ Language and Tools for
Hardware and Software Engineers. Pearson, 2003.

L. Lamport and L.C. Paulson. “Should your specification
language be typed?” In: ACM TOPLAS 21.3 (1999), pp. 502-526.

S. Lang. Undergraduate Analysis. Springer, 1983.
R. Larson and B. Edwards. Calculus 9e. Brooks/Cole, 2009.

S. Lavington, ed. Alan Turing and his Contemporaries: Building the
world’s first computers. Swindon, UK: bcs, 2012.

D. Leavitt. The Man Who Knew Too Much: Alan Turing and the
Invention of the Computer. New York: Atlas Books, 2006.

D. Leavitt. Alan Turing, I'homme qui inventa l'informatique. Paris:
Dunod, 2007.

E.A. Lee. “Absolutely positive on time: what would it take?” In:
Computer 38.7 (2005), pp. 85-87.

E.A. Lee and P. Varaiya. Structure and Interpretation of Signals and
Systems. Addison Wesley / Pearson Education, 2003.

J.A.N. Lee. Computer pioneers. California: IEEE Computer Society
Press, 1995.

H. Lewis and C. Papadimitriou. Elements of the Theory of
Computation. Ed. by Engelwood Cliffs. New Jersey: Prentice-Hall,
1981.

B. Liskov and S. Zilles. “Programming with abstract data types”.
In: ACM SIGPLAN Notices 9 (1974), pp. 50-59.

B.H. Liskov and S. Zilles. “Specification Techniques for Data
Abstractions”. In: IEEE Transactions on Software Engineering (1975),
pp- 72-87.

K.C. Liu and A.C. Fleck. “String pattern matching in polynomial
time”. In: 6th ACM Symposium on Principles of Programming
Languages. 1979, pp. 222-225.

W.N. Locke and A.D. Booth, eds. Machine Translation of Languages:
Fourteen Essays. Cambridge, MA and New York: MIT Press and
John Wiley & Sons, Inc., 1955.

R.L. London. Who Earned First Computer Science Ph.D.? BLOG
@CACM (2013), http:/ /cacm.acm.org/blogs /blog-cacm /159591-
who-earned-first-computer-science-ph-d /fulltext.

236

BIBLIOGRAPHY

[232]
[233]

[234]

[235]

[236]

[237]

[238]

[239]

[240]

[241]
[242]
[243]
[244]
[245]

[246]

[247]

S. Mac Lane. Categories for the Working Mathematician. Springer,
1971.

D. MacKenzie. Mechanizing Proof: Computing, Risk, and Trust. MIT
Press, 2004.

M.S. Mahoney. Histories of Computing. Ed. by T. Haigh. Cam-
bridge, Massachusetts/London, England: Harvard University
Press, 2011.

Z. Manna and J. Vuillemin. “Fixpoint approach to the theory of
computation”. In: Communications of the ACM 15 (1972), pp. 528-
536.

J. Martin-Nielsen. ““This war for men’s minds’: the birth of a
human science in Cold War America”. In: History of the Human
Sciences 23.5 (2010), pp. 131-155.

S. Martini. “Several Types of Types in Programming Languages”.
In: History and Philosophy of Computing 2015. 2015, pp. 216-227.

J. McCarthy. “Recursive Functions of Symbolic Expressions and
Their Computation by Machine, Part 1”. In: Communications of the
ACM 3.4 (1960), pp. 184-195.

J. McCarthy. “History of Programming Languages”. In: ed. by
R.L. Wexelblat. New York: Academic Press, 1981. Chap. ‘History
of LISP’ and the transcripts of: presentation, discussant’s remark,
question and answer session, pp. 173-195.

W.S. McCulloch and W. Pitts. “A Logical Calculus of the Ideas
Immanent in Nervous Activity”. In: Bull. math. Biophys. 5 (1943),
pp. 115-133.

G.H. Mealy. “A method for synthesizing sequential circuits”. In:
Bell Systems Technology Journal 34 (1955), pp. 1045-1079.

E. Mendelson. Introduction to Mathematical Logic (3rd. ed.) Wads-
worth & Brooks / Cole, 1987.

A.R. Meyer and D.M. Ritchie. “The complexity of loop programs”.
In: Proceedings of the ACM National Meeting. 1967, pp. 465-469.

B. Meyer. Introduction to the Theory of Programming Languages.
Prentice Hall, 1991.

M. Minsky. Computation: Finite and Infinite Machines. Prentice-
Hall, Inc, 1967.

L. De Mol. “Doing mathematics on the ENIAC. Von Neumann’s
and Lehmer’s different Visions.” In: Mathematical practice and
development throughout History. Ed. by E. Wilhelmus and I. Witzke.
Logos Verlag, Berlin, 2009, pp. 149-186.

L. De Mol and M. Bullynck. “A short history of small machines”.
In: CiE 2012 - How the World Computes. 2012.

BIBLIOGRAPHY 237

[248]

[249]

[250]

[251]

[252]

[253]

[254]

[255]
[256]

[257]

[258]

[259]

[260]

[261]

[262]

L. De Mol, M. Bullynck, and M. Carle. “Haskell before Haskell.
Curry’s contribution to a theory of programming.” In: Programs,
Proofs, Processes, Computability in Europe 2010. Vol. 6158. LNCS.
2010, pp. 108-117.

E.FE. Moore. “Gedanken-experiments on sequential machines”. In:
Automata Studies. Princeton University Press, 1956, pp. 129-153.

H.L. Morgan and R.A. Wagner. “PL/C: the design of a high-
performance compiler for PL/1”. In: AFIPS Spring Joint Computing
Conference. 1971, pp. 503-510.

P. Mounier-Kuhn. “Comment l'informatique devint une science”.
In: La Recherche 465 (2012), pp. 92-94.

P. Mounier-Kuhn. “Computer Science in French Universities:
Early Entrants and Latecomers”. In: Information & Culture: A
Journal of History 47.4 (2012), pp. 414-456.

P. Mounier-Kuhn. “Logic and Computing in France: A Late
Convergence”. In: AISB/IACAP World Congress 2012 — History
and Philosophy of Programming. Ed. by L. De Mol and G. Primiero.
2012, pp. 44-47.

P. Mounier-Kuhn. “Algol in France: From Universal Project to
Embedded Culture”. In: IEEE Annals of the History of Computing
36.4 (2014), pp. 6-25.

S. Nanz, ed. The Futurue of Software Engineering. Springer, 2011.

P. Naur. “The European side of the last phase of the development
of ALGOL 60”. In: History of Programming Languages. Ed. by R.L.
Wexelblat. New York: Academic Press, 1981, pp. 92-139.

P. Naur. Computing: A Human Activity. New York: ACM Press /
Addison-Wesley, 1992.

A. Newell and FEM. Tonge. “An Introduction to Information
Processing Language V”. In: Communications of the ACM 3.4
(1960), pp. 205-211.

D. Nofre. “Unraveling Algol: US, Europe, and the Creation of
a Programming Language”. In: IEEE Annals of the History of
Computing 32.2 (2010), pp. 58-68.

D. Nofre. Alan Jay Perlis. Short bio of Perlis, available on the
official ACM website: amturing.acm.org/award_winners. 2012.

D. Nofre, M. Priestley, and G. Alberts. “When Technology Became
Language: The Origins of the Linguistic Conception of Computer
Programming, 1950-1960". In: Technology and Culture 55.1 (2014),
pp- 40-75.

K.V. Nori, U. Ammann, K. Jensen, H.H. Nageli, and C. Jacobi.
“Pascal-P Implementation Notes”. In: Pascal — The Language and

238

BIBLIOGRAPHY

[263]
[264]
[265]
[266]

[267]

[268]

[269]

[270]

[271]
[272]
[273]
[274]
[275]
[276]

[277]

[278]

its Implementation. Ed. by D.W. Barron. John Wiley and Sons, Inc.,
1981, pp. 125-170.

M.]. O’Donnell. “Computing in Systems Described by Equations”.
In: Lecture Notes in Computer Science 58 (1977).

A.G. Oettinger. “Programming a Digital Computer to Learn”. In:
Philosophical Magazine 43.347 (1952), pp. 1243-1263.

A.G. Oettinger. “Account identification for Automatic Data
Processing”. In: Journal of the ACM 4.3 (1957), pp. 245-253.

A.G. Oettinger. Automatic Language Translation. Cambridge,
Massachusetts, USA: Harvard University Press, 1960.

A.G. Oettinger. “Automatic Syntactic Analysis and the Pushdown
Store”. In: Proceedings of Symposium in Applied Mathematics. Vol. 12.
Providence: American Mathematical Society, 1961, pp. 104-129.

A.G. Oettinger. “Reminiscences of the Boss”. In: Makin’ Numbers:
Howard Aiken and the Computer. Ed. by L.B. Cohen and G.W. Welch.
Cambridge, Massachusetts, USA: MIT Press, 1999, pp. 203-214.

A. Olley. “Existence Precedes Essence — Meaning of the
Stored-Program Concept”. In: IFIP Advances in Information and
Communication Technology. Ed. by A. Tatnall. Vol. 325. Springer,
2010, pp. 169-178.

C.H. Papadimitriou. The Origin of Computable Numbers: A Tale of
Two Classics. YouTube: www.youtube.com/watch?v=IZWjFCTx0
OQ. Presentation at the Turing Centennial Celebration at Prince-
ton, 10-12 May 2012. 2012.

D.L. Parnas. “On Proving Continuity of Programs”. In: Letter to
the Editor of the Communications of the ACM 55.11 (2012), p. 9.

Al]. Perlis. “Announcement”. In: Communications of the ACM 1.1
(1958).

B.C. Pierce. Basic Category Theory for Computer Scientists. The MIT
Press, 1991.

W. van der Poel. Inzending 1946/47 van Van der Poel op de prijsvraag
genaamd “1+1=10". Tech. rep. Delft, 1948.

W.L. van der Poel. “A Simple Electronic Digital Computer”. In:
Appl. sci. Res. 2 (1952), pp. 367-399.

W.L. van der Poel. “The Logical Principles of Some Simple
Computers”. PhD thesis. Universiteit van Amsterdam, 1956.
W.L. van der Poel. “Digitale Informationswandler”. In: ed. by W.
Hoffmann. Braunschweig: Vieweg, 1961. Chap. Microprogram-
ming and trickology, pp. 269-311.

W.L. van der Poel. Een leven met computers. TU Delft. Oct. 1988.

BIBLIOGRAPHY 239

[279]

[280]

[281]
[282]

[283]

[284]

[285]

[286]

[287]

[288]
[289]

[290]
[291]

[292]

[293]
[294]

[295]

Preliminary Report — Specifications for the IBM Mathematical
FORmula TRANslating System. Tech. rep. New York: IBM, Pro-
gramming Research Group, 1954.

M. Priestley. A Science of Operations: Machines, Logic and the
Invention of Programming. Ed. by M. Campbell-Kelly. London:
Springer, 2011.

PM. Priestley. Logic and the Development of Programming Languages,
1930-1975. PhD thesis. University College London, May 2008.
W.V. Quine. Set Theory and Its Logic. The Belknap Press of Harvard
University Press, 1969.

M.O. Rabin and D. Scott. “Finite Automata and their Decision
Problems”. In: IBM Journal of Research and Development 3.2 (1959),
pp. 114-125.

G. Radin and H.P. Rogoway. “NPL: Highlights of a New
Programming Language”. In: Communications of the ACM 8 (1965),
pp- 9-17.

B. Randell, ed. The Origins of Digital Computers: Selected Papers.
Berlin Heidelberg New York: Springer-Verlag, 1973.

B. Randell and L.J. Russell. ALGOL60 Implementation. Academic
Press, 1964.

S.N. Razumovskii. “On the question of automatization of
programming of problems of translation from one language to
another”. In: Doklady Aka. Nauk S.5.S.R. 113 (1957), pp. 760-762.
J.C. Reynolds. Letter to the author on 9 March 2012.

C.J. van Rijsbergen. “Turing and the origins of digital computers”.
In: Aslib Proceedings. Vol. 37. 6/7. Paper presented at an Aslib
Evening Meeting, Aslib, Information House, 27 March 1985.
Emerald Backfiles, 1985, pp. 281-285.

C.E. Jr. Roberts. Introduction to Mathematical Proofs — A Transition.
CRC Press, 2010.

J.A. Robinson. “A machine-oriented logic based on the resolution
principle”. In: Journal of the ACM 12 (1965), pp. 23—41.

J.A. Robinson. “Logic, computers, Turing, and von Neumann”. In:
Machine Intelligence 13: Machine Intelligence and Inductive Learning.
Ed. by K. Furukawa, D. Michie, and S. Muggleton. Oxford, UK:
Clarendon Press, 1994, pp. 1-35.

C. Rooijendijk. Alles moest nog worden uitgevonden: De geschiedenis
van de computer in Nederland. Olympus, 2007.

P. Rosenbloom. Elements of Mathematical Logic. New York: Dover,
1950.

H.L. Royden. Real Analysis. Macmillan, 1968.

240

BIBLIOGRAPHY

[296]
[297]
[298]

[299]

[300]

[301]

[302]
[303]
[304]
[305]

[306]
[307]

[308]
[309]
[310]

[311]

[312]
[313]

W. Rudin. Principles of Mathematical Analysis. McGraw-Hill, 1964.
H. Rutishauser. “The Use of Recursive Procedures”. In: Annual
Review in Automatic Programming 3. Ed. by R. Goodman. New
York: Pergamon Press, 1963, pp. 43-52.

J.G. Sanderson. “On Simple Low Redundancy Languages”. In:
Communications of the ACM 8.10 (1965). Letters to the Editor.
S.R. Sataluri and A.C. Fleck. “Semantic specification using
logic programs”. In: Logic Programming, Proceedings of the North
American Conference 1989. Ed. by E.L. Lusk and R.A. Overbeek.
Vol. 2. Cleveland, Ohio: MIT Press, 1989, pp. 772-794.

E.R. Scheinerman. Mathematics — A Discrete Introduction (3rd. ed.)
Cengage Learning, 2012.

E. Shapiro. “Separating Concurrent Languages with Categories
of Language Embeddings”. In: Proceedings of the Twenty-third
Annual ACM Symposium on Theory of Computing. 198-208. 1991.
H.S. Shuard. “Does it matter?” In: The Mathematical Gazette 59.407
(1976), pp. 7-15.

B.C. Smith. “The Limits of Correctness”. In: ACM SIGCAS
Computers and Society 14,15 (1985), pp. 18-26.

D. Smith, M. Eggen, and R. St Andre. A Transition to Advanced
Mathematics. Cengage Learning, 2010.

J.M. Spivey. The Z Notation — A Reference Manual. http:/ /spivey
.oriel.ox.ac.uk/~mike/zrm/. Prentice Hall, 1989.

D. Sprecher. Elements of Real Analysis. Academic Press, 1970.

J.B. Stewart. Calculus: Early Transcendentals (7th. ed.) Cengage
Learning, 2010.

H. Stoyan. “Early LISP History (1956-1959)”. In: LISP and
Functional Programming. 1984, pp. 299-310.

C. Strachey. “An impossible program”. In: Letter to the Editor of
the Computer Journal (1965), p. 313.

C. Strachey. The Varieties of Programming Language. Monograph
PRG-10. Oxford University, Computing Laboratory, 1973.

C. Strachey and M.V. Wilkes. “Some proposals for improving
the efficiency of ALGOL 60”. In: Communications of the ACM 4.11
(1961). Also in: University Mathematical Laboratory Technical
Memorandum, No. 61/5, pp. 488—491.

P. Suppes. Axiomatic Set Theory. Dover, 1972.

LE. Sutherland. “Sketchpad: a man-machine graphical communi-
cation system”. In: AFIPS’63 — Spring Joint Computer Conference.
1963, pp. 392-346.

BIBLIOGRAPHY 241

[314]

[315]

[316]

[317]

[318]

[319]

[320]

[321]

[322]

[323]

[324]

[325]

[326]

[327]

Symposium on Advanced Programming Methods for Digital Com-
puters — Washington, D.C., June 28,29, 1956. Available from the
“Saul Gorn Papers” from the University of Pennsylvania Archives
(unprocessed collection): UPT 50 G671 Box 43. 1956.

Symposium on Automatic Programming for Digital Computers. Office
of Naval Research, Department of the Navy. Washington D.C.,
May 1954.

A. Tarski and S. Givant. A Formalization of Set Theory Without
Variables. Reprinted with corrections 1988. The American Mathe-
matical Society, 1987.

M. Tedre. The Science of Computing: Shaping a Discipline. Taylor
and Francis, 2014.

K. Thompson. “Regular expression search algorithm”. In: Com-
munications of the ACM 11.6 (1968), pp. 419-422.

H. Tuch, G. Klein, and M. Norrish. “Types, Bytes, and Separation
Logic”. In: Principles of Programming Languages. 2007.

A M. Turing. “On Computable Numbers, with an Application
to the Entscheidungsproblem”. In: Proceedings of the London
Mathematical Society, 2nd series 42 (1936), pp. 230-265. Corrections
provided in [321].

AM. Turing. “On Computable Numbers, with an Application to
the Entscheidungsproblem. A Correction”. In: Proceedings of the
London Mathematical Society, 2nd series 43 (1937).

A M. Turing. “Computing machinery and intelligence”. In: Mind
59 (1950), pp. 433-460.

D.A. Turner. “A new implementation technique for applicative
languages”. In: Software — Practice and Experience 9 (1979), pp. 31-
49.

D.A. Turner. “Miranda: a non-strict functional language with
polymorphic types”. In: IFIP International Conference on Functional
Programming Languages and Computer Architecture. Vol. 201.
Lecture Notes in Computer Science. Springer-Verlag, 1985,
pp- 1-16.

R. Turner. “Programming Languages as Technical Artefacts”. In:
Philosophy and Technology 27.3 (2014). First online: 13 February
2013, pp. 377-397.

UNCOL Committee Report. From the Charles Babbage Institute
collections. Thanks to David Nofre for giving me a copy of this
letter. 1961.

University of Pennsylvania Computer Activity Report: July 1, 1959 —
December 31, 1960. Tech. rep. Available from the “Saul Gorn Pa-

242

BIBLIOGRAPHY

[328]
[329]
[330]

[331]

[332]

[333]

[334]
[335]
[336]

[337]

[338]
[339]
[340]
[341]

[342]
[343]

pers” from the University of Pennsylvania Archives (unprocessed
collection): UPT 50 G671 Box 39. Office of Computer Research
and Education, 1960.

USA Standard FORTRAN, ANSI X3.9-1966. USA Standards
Institute, Inc.

M.Y. Vardi. “Who Begat Computing?” In: Communications of the
ACM 56.1 (2013), p. 5.

D.J. Velleman. How To Prove It: A Structured Approach (2nd. ed.) 5th
printing. Cambridge, 2009.

C.J.D.M. Verhagen. Rekenmachines in Delft. Uitgave van de

Commissie Rekenmachines van de Technische Hogeschool te
Delft. 1960.

B. Bensaude Vincent. “Discipline-building in synthetic biology”.
In: Studies in History and Philosophy of Science Part C: Studies in
History and Philosophy of Biological and Biomedical Sciences 44.2
(2013), pp. 122-129.

J. Voeten. “On the fundamental limitations of transformational
design”. In: ACM Transactions on Design Automation of Electronic
Systems 6.4 (2001), pp. 533-552.

W.D. Wallis. A Beginner’s Guide to Discrete Mathematics (2nd. ed.)
Birkh&user, 2012.

R.L. Wexelblat, ed. History of Programming Languages. New York:
Academic Press, 1981.

A.van Wijngaarden. Switching and Programming. Tech. rep. Report
MR 50. Mathematisch Centrum Amsterdam, 1962.

A. van Wijngaarden. “Generalized ALGOL”. In: Annual Review
in Automatic Programming. Ed. by R. Goodman. Vol. 3. New York:
Pergamon Press, 1963, pp. 17-26.

A. van Wijngaarden. “Numerical analysis as an independent
science”. In: BIT 6 (1966), pp. 66-81.

A. van Wijngaarden and E.W. Dijkstra. Programmeren voor
Automatische Rekenmachines. Amsterdam, 1955.

Wikipedia. List of programming languages. https:/ /en.wikipedia
.org/wiki/List_of programming_languages.

M.V. Wilkes. “Can Machines Think?” In: Spectator 6424 (1951),
pp. 177-178.

M.V. Wilkes. Memories of a Computer Pioneer. MIT Press, 1985.

N. Wirth. “The programming language Pascal”. In: Acta Informa-
tica 1 (1971), pp. 35-63.

BIBLIOGRAPHY 243

[344]

[345]

[346]

[347]

[348]

N. Wirth. “Recollections about the development of Pascal”. In:
History of Programming Languages. Ed. by T.J. Bergin Jr. and R.G.
Gibson Jr. Addison-Wesley, 1996, pp. 97-111.

N. Wirth and C.A.R. Hoare. “A contribution to the development
of ALGOL”. In: Communications of the ACM 9 (1966), pp. 423—432.
N. Wirth and H. Weber. “EULER: A Generalization of ALGOL,
and its Formal Definition: Part 1”. In: Communications of the ACM
9.1 (Jan. 1966), pp. 13-25. Part 11, ibid. 9,2 (1966) 89-99.

W. Wulf, R. London, and M. Shaw. “An introduction to the
construction and verification of Alphard programs”. In: IEEE
Transactions on Software Engineering 2.4 (1976), pp. 253-265.

E. Zakon. Mathematical Analysis, Vol. I. http:/ /www.trillia.com
/d9/zakon-analysisl-a4-one.pdf. Trillia, 2004.

