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Preface

This book is the second in a series publishing the results of a research
project into Operating Systems Techniques. This project was undertaken by
the Computing Science Department of the Queens University, Belfast, under
the direction of Professor C. A. R. Hoare. It was sponsored by International
Computers Limited and the Advance Computer Technology Project
(Contract No. K78B/308) by whose kind permission this baok is published.

The purpose of the research was to investigate, clarify and evaluate the
practical techniques which have been used in the implementation of successful
Operating Systems and to produce a reliable guide upon which an operating
system designer can base his decisions.

The programme of work split into two distinct phases. Firstly, the
collection and presentation of the structure and technology of selected
operating systems. Secondly, the analysis of the techniques used in each
system to achieve a particular function and to relate the technique with its
objective and operational context.

This book presents the results of the first phase of the study and contains
the descriptions of four key operating systems chosen because each has made
a significant contribution to the development of operating systems.

Despite great differences in system structures and terminology it has been
possible to create a series of essentially uniform descriptions. At the lowest
levels of detail this has not been entirely possible, and each study is there-
fore supplemented by a short glossary of terms particular to the system, and
to correlate the standardized terminclogy with that originally chosen by the
system designer.

The information contained in this book is not normally available even
to the users of the systems. It therefore fills a significant gap in the information
available to users, teachers of computing science, students and designers of
operating systems.

It will enable the user to gain a closer insight into the system he is using
and to understand the extent to which existing techniques can solve his
problems. To the teacher and student it will provide for the first time the
basis for comparative studies. To the designer it will represent a source book
of information on techniques and their practical application.



vi PREFACE

Finally, the authors wish to express their gratitude for the encouraging
assistance received from the designers of the systems and their organizations
for the way in which detailed design documentation has been made available,
and for permission to publish the resultant descriptions of their system.

International Computers Limited D. H. R. HUXTABLE
Bracknell, Berkshire. R. H. MCKEAG
R. WILSON
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III. T.H.E. Multiprogramming System

R. M. McKEaG

I. INTRODUCTION

The T.H.E. Multiprogramming System was designed and implemented by
E. W. Dijkstra and five other members of the Department of Mathematics
at the Technological University of Eindhoven: C. Bron, A. N. Habermann,
F. I. A. Hendriks, C. Ligtmans and P. A. Voorhoeve.

Dijkstra (1968b) defines the purpose of the system to be the smooth
processing of a continuous flow of user programs as a service to the Uni-
versity, and the objectives to be: firstly a reduction of turnaround time for
short programs, secondly the economic use of peripheral devices, thirdly
automatic control of backing store combined with economic use of the
central processor and fourthly the economic feasibility to use the machine
for those applications for which only the flexibility of a general purpose
computer is needed, but (as a rule) not the capacity nor processing power.
Bron (1972) adds a further objective: ease of use, by both operator and
programmer.

The user sees the system as a batch processing one with no file store.
To submit a job he supplies a paper tape containing his program in
ALGOL 60 (the only language used in the system); the rudimentary job
description is at the beginning of the tape and consists of the word “algol”
followed by the maximum numbers of non-pre-emptible resources (viz.,
punches, plotter and magnetic tape decks) that the program will require,
for these are the only resource requirements of which he is certain—he
could do no more than estimate the others. Alternative forms of job are
“correction” followed by a list of editing instructions and “runst” to obtain
a print-out of the run statistics or log maintained by the system. Once
started, a job has available to it two reader streams, two punch streams,
one plotter stream and one printer stream. There are no restrictions on run
time nor, subject to physical limitations, on store; the operator, however,
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has ample opportunities to dispose of a program that is attempting to use
excessive amounts of these resources.

The operating system does no job scheduling and this is done by the
operator. In general he attempts to have one long job and up to three shorter
jobs running simultaneously. The only constraint imposed by the system is
that the number of magnetic tape decks required by a program must be
available before that program is run. In addition, there is one extra “job
stream” permanently reserved for the running of correction jobs. One unusual
task that the operator has to perform is to collate the sheets of printer
output: since the printer works on a sheet-at-a-time basis and not a file-
at-a-time basis, it occasionally happens that the output of one user’s file is
temporarily interrupted to enable another user’s output to be printed.

The computer chosen for this system was an Electrologica X8 with
initially 32K and subsequently 48K 27-bit words of core store with a cycle
time of 2-5 us. In addition to a 512K drum with 1K words per track and a
revolution time of 40 ms, the configuration includes three 1000 characters
per second paper tape readers, three 150 characters per second paper tape
punches, a plotter, a line printer and a console teletypewriter. Some time
after the original system came into operation three magnetic tape decks
were added.

The overall performance of the multiprogramming system can be measured
against the manufacturer’s single programming operating system. At Eind-
hoven both systems are used with the former taking an increasing share of
the workload despite being 209, less efficient than the latter. The reasons
why the multiprogramming system is preferred are firstly the short turn-
around time for the majority of jobs and secondly the capability of running
very large programs using the virtual store; it is this virtual store, imple-
mented by software paging, that leads to the inefficiency figure of 20%
mentioned above.

In this description of the T.H.E. Multiprogramming System certain
liberties have been taken with the nomenclature. This has been done because
this description is one of a series in which a number of operating systems
are examined and treated in a reasonably uniform manner. A glossary of
some of the terms used. together with their Eindhoven equivalents, appears
towards the end of this chapter to assist those who are familiar with the
T.H.E. terminology. The programming notation used is based upon
ALGOL 60 with the addition of the data structuring notations of Pascal
and a few other extensions whose meanings should be readily apparent.

Finally I should like to express my appreciation of the considerable help
I have received from E. W. Dijkstra and C. Bron of the University of
Eindhoven, and of the guidance I have received from C. A. R. Hoare of the
Queen’s University of Belfast.
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II. SYSTEM STRUCTURE AND SYNCHRONIZATION

A. OBJECTIVES

The system is organized as a society of sequential processes which progress
in parallel with undefined relative speeds and which communicate with one
another using well defined synchronization rules. In this way the problems
of dealing with irreproducible time-dependent phenomena, arising from real-
time interrupts or from the arbitrary scheduling of resources, are avoided.

The control of the resources of the system is organized hierarchically: at a
particular level the resources of a given type are treated in such a way that
at all higher levels the physical resources have lost their identities and have
been replaced by virtual resources. Thus a process at one level operates
entirely in terms of virtual resources at lower levels and need not be aware
of what processes and resources exist at higher levels. The simplicity of this
structure enables the logical soundness of the design of the system, and the
correctness of the implementation, to be readily verified.

B. A SOCIETY OF PROCESSES

1. [Introduction

The foundations of the T.H.E. system have been clearly described by
Dijkstra (1968a, b). He has explained that the structure of the system was
considerably influenced by his fears about the possibility of debugging soft-
ware that depends upon irreproducible real-time interrupts. Consequently,
since only the time succession of logical states of a sequential process is
meaningful and not the speed with which the process progresses, the system
was designed as a society of sequential processes that progress in parallel
with undefined speed ratios.

Much of each process is entirely independent of all other processes in the
system and so its correctness is entirely independent of the speed of the
process. In the other parts, in which the process wishes to inspect and update
common data or to synchronize itself with respect to external events such
as interrupts, the synchronization is explicit: no reliance is placed on the
fact that a particular event will occur at a particular time. Thus the speed
with which a process progresses can never affect the interior logic of that
process. '

In the T.H.E. system there are 15 processes: one corresponding to each
independent activity in the system. In particular there is one process
associated with each peripheral device : the drum, the operator’s console, the
printer, the plotter, each of the three readers and each of the three punches;
each of these processes synchronizes its activity with respect to interrupts
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from its peripheral device. There are also five processes corresponding to
the five user programs that may be executed concurrently.

2. Mutual Exclusion— The Binary Semaphore

Part of each process consists of operations upon data local to that process.
The rest consists of operations upon common variables. It is important that
the latter operations are protected so that while one process accesses a set
of shared data all other processes are excluded from referencing that data.
This is known as the “mutual exclusion” problem and a section of program
in which exclusive access is required to some common data is called a
“critical section”. It behoves any process wishing to enter a critical section
to test whether it is excluded from doing so; if so the process must wait;
and when it may enter it must signal to other processes that they are
excluded. On leaving a critical section the process must signal that the
shared data is again accessible, and it must accept responsibility for waking
one and only one waiting process, if there is one. It is also necessary that
these entry and exit operations are not interrupted by some other process.

For this reason Dijkstra (1968a) has introduced a mechanism called a
“semaphore” which is a non-negative integer variable that is subject to two
operations, P and V. A V-operation increments by one the value of the
semaphore in one indivisible operation. A P-operation performs, in one
indivisible operation, a test to determine whether the value of the semaphore
is zero and, if not, decrements the value by one; if however it is zero the
process suspends itself pending the occurrence of a corresponding V-
operation and thus the satisfactory completion of the interrupted P-
operation. In practice the effect of the V-operation is extended to test
whether some other process may now complete its interrupted P-operation
and, if so, to permit it to continue. The V-operation derives its name {rom
the Dutch word “verhogen™ meaning “to raise”, while the P-operation takes
its name from the non-existent portmanteau word “prolagen” which is
compounded from the Dutch verbs “proberen verlagen” meaning “to attempt
to lower”.

A semaphore that takes only the values 0 and 1 is called a “binary
semaphore” or “Boolean semaphore”. Such a semaphore may be used to
control access to critical sections: a binary semaphore mutex, with initial
value 1, may be declared in association with a set of shared variables;
prior to entering a critical section associated with this data, a process would
perform a P(mutex) operation and, on exit, V(mutex). A mutual exclusion
semaphore is characterized by the fact that each process that uses it will
always perform an ordered pair of operations (P then V) upon it. At any
moment there may be as many as (n— 1) processes waiting on mutex, where n
is the number of processes interested in the data.
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3. The Private Semaphore

Associated with each process is a “private semaphore™ This is a binary
semaphore, initially 0 in value and characterized by the fact that only the
process to which it belongs ever performs P-operations upon it. It is used
when its process is unable to continue, typically because some resource is
unavailable. At some time another process will release the resource and,
on noting that the suspended process can now continue, will perform a V-
operation on the semaphore.

4. Producers and Consumers— The General Semaphore

It is common for two (or more) processes to work in such a manner that
one produces items which the other consumes. The consumer must have some
way of suspending itself if production cannot keep pace with consumption.
For this reason the “general semaphore” is introduced : it can take any non-
negative integer value and is 0 initially. Whenever an item has been produced
the producing process performs a V-operation upon the semaphore associ-
ated with the queue of items; and whenever a consumer is ready to
consume another item it performs a P-operation on the semaphore and is
suspended if the queue of items is empty. The value of the semaphore
therefore represents the length of the queue of items.

5. The Implementation of Semaphores
In the EL X8 computer of the T.H.E. system the indivisibility of the V- and
P-operations can be ensured by the use of an instruction to “add contents
of store location to register, leaving the result in both”. However advantage
is taken of the fact that the computer has only a single processor and so
mutual exclusion can be achieved by disabling interrupts for short periods.
Semaphores in this system are classified as either “software semaphores”
or “hardware semaphores™ The latter are those whose V-operations are
performed not by software processes but by peripheral devices. Dijkstra
(1968b) calls this “an interrupt system to fall in love with”; it is described
more fully later. The main characteristic of a hardware semaphore is that
its value is stored in a fixed main store location known to the hardware of
the peripheral device. Every semaphore contains, as well as its value, a count
of the number of processes waiting on it.

C. A HIERARCHY OF RESOURCES

1. The Structure

The purpose of the operating system is to share the hardware amongst the
various processes that run concurrently. These hardware resources are
organized in a hierarchical manner, and at each level of the hierarchy some
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resource type is treated in such a way that at all higher levels the physical
resources of that type have lost their identities and have been replaced by
virtual resources.

At the lowest level the dispatching of processor time takes place. Above
this level the actual number of processors in the computer is irrelevant and
each process is given the impression that it has its own dedicated processor;
this virtual processor is of course slower than the actual processor and less
regular but that does not affect the interior logic of the process. This level
consists of some shared routines (and data) which are used to implement the
P- and V-operations and which also respond to clock interrupts by switching
the processor from one process to another. By disabling interrupts a process
may ensure that it has exclusive access to this dispatcher.

The mapping of the virtual store onto the physical (core and drum) stores
is to be found at the next level. At higher levels the two-level physical store
ceases to exist and the identification of information takes place entirely in
terms of the virtual store. This level contains several shared routines (and data
structures) by which processes map their virtual addresses onto actual
addresses, acquire and release areas of core and drum store, and communicate
with the dium process whose task is to transfer information between core and
drum in synchronism with the latter.

The next level is concerned with the sharing of the operator’s console.
At higher levels each process is under the impression that it has its own
console. The level comprises several shared routines (and their data) used by
processes to acquire and release the console and to communicate with the
console process. This process interprets messages typed by the operator and
routes each to its destination process.

The remaining resources—the readers, punches, printer and plotter—are
treated at the next level. Corresponding to each of these eight input/output
devices is a process which, like the drum process or console process, may be
considered to be a software extension of the hardware with which it is
associated. Higher level processes perform their input and output by operat-
ing upon a number of virtual devices which, at this level, are mapped onto
the actual devices. Thus at this level there are a number of streams of
buffered input and output (these represent the virtual devices), together with
the shared routines for operating upon the streams and for communicating
with the device processes.

Above the hierarchy of resources and its 10 supervisor processes are to
be found the five user processes that constitute the uppermost level. Four of
these are general purpose and run the majority of the user jobs, while the
fifth is reserved by the data preparation staff for editing paper tape and is
special purpose in that it always uses-the same reader and punch.

It can be seen that a program at a particular level operates entirely in
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terms of virtual resources provided at lower levels and is unaware of what
processes and resources exist at higher levels. If a program needs to use a
resource that is not available at that level in virtual form, then it must
work in terms of the physical resource. Thus in this system the drum process
and the shared routines and data dealing with processor dispatching and
store management must occupy a permanent allocation of core store. For
reasons of efficiency other routines and data of the operating system also
reside permanently in main store.

Processes that make use of the virtual store are obliged to recognize that
the size of the underlying physical store is limited, and so they must cooperate
in ensuring that sufficient storage is always available to enable the system to
continue working satisfactorily without being slowed down or stopped by a
bottleneck. This means that from time to time a process must wait until an
adequate amount of store is available whereupon it receives permission from
one of its fellows to continue. :

Except that mutual exclusion is occasionally ensured by disabling inter-
rupts, all synchronization is effected using semaphores. Processes that invoke
the shared routines described above use mutual exclusion semaphores to
protect the data accessed by those routines, they use private semaphores
when they are obliged to wait for permission to continue, and they use
general semaphores to coordinate their producer or consumer relationships
with other processes.

2. Reasons and Consequences
The reasons for assigning particular resources to particular levels were
pragmatic. Console control is at a higher level than store management SO
that the former can make use of the virtual store provided by the latter
and thereby avoid the unnecessary expense of permanently occupying a
partition of main store. The input/output processes must be able to converse
with the operator and so must be at a higher level than the console process.
In retrospect, however, this allocation of resources to levels turns out to
be correct for a more fundamental reason. If a program invokes an operation
upon a virtual resource (and this operation may involve a delay if no
corresponding real resource is immediately available) then it isimportant that
the time taken by the operation is smaller (by one or more orders of
magnitude) than the “grain of time” in which the invoking program works.
So if an operation upon a virtual resource is to be considered as atomic
at higher levels, the resources of the system must be assigned to levels in the
hierarchy in such a way as to reflect the grains of time in which they work.
For example, while it is reasonable for the console process to invoke the
drum process and suffer no significant delay the converse is not true and so
store management must be at a lower hierarchical level than console control.
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Since a call on a lower level of the hierarchy is to be considered as

atomic it is important that any delay suffered during the operation be
 limited ; in other words it is important that no scheduler in the operating
system should delay any of its callers for too long. Not only would an
excessive delay upset the grains of time of programs at higher levels and
thus make response times and turnaround times unpredictable for the user,
but, and this is more important, serious instabilities may develop in the
system. For example, if a process is starved of processor time for too long
it may find, when it is at last dispatched, that all of its pages have been
removed from main store; such instabilities tend to spread like wildfire.

The grains of time argument apart, there are several good reasons for
adopting a hierarchical structure. One is that it is a simple method for
controlling the complexity of a large programming task : the system designer
can construct each level with little or no regard to the rest of the system:
he works in terms of virtual resources supplied by lower levels and he is
unaware of what exists at higher levels (except in a very broad sense). Conse-
quently the designer of a scheduler for a particular level has little data
available to him and so is obliged to construct an algorithm that is not only
simple (and hence cheap and readily amenable to analysis) but also in-
dependent of, rather than attuned to, the workload it is to support.

An impressive consequence of using this structuring method is that
Dijkstra (1968b) was able to claim that “the resulting system is guaranteed to
be flawless” because he was able to verify the logical soundness of the design
and to test the correctness of the implementation. The verification of the
design was established by regarding each process as being cyclic with a
neutral “homing position™ which it leaves on accepting a task and to which
it returns when and only when that task has been completed; the system is
at rest when all processes are in their homing positions. The harmonious
cooperation of the processes was then proved in three stages. Firstly, as
each process activated to perform a single task can be shown to generate a
finite number of tasks, and as circularity of task generation is excluded
because a process can only generate tasks for processes at lower levels of
the hierarchy, no single initial task can give rise to an infinite number of
new tasks. Secondly, it was demonstrated that it is impossible for all processes
to return to their homing positions leaving a generated but unaccepted task.
Finally, it was proved, using induction, that after the acceptance of an initial
task all processes eventually return to their homing positions.

Verifying the correctness of the implementation consisted of testing the
lowest level by itself at first, and then adding and testing the other levels one
by one. The testing of each level required that a set of test processes had to
be written to force the program being tested into all its “relevant states”
and to check that the system continued to work as expected. That the team
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were able to decide what the relevant states were, that they were able to
convince themselves that they had not overlooked any such state, and that
they were able to generate them all, were due to the simplicity of the
scheduling algorithms and the hierarchical structure which ensured that there
were few states to be tested at each stage.

D. PROTECTION

An important feature of the T.H.E. system is that every process is well
behaved and so the operating system is absolved from the policing function
normally associated with supervisors. This is achieved by limiting users to
high level languages (ALGOL 60 in this case) so that much checking can be
performed at compilation and the rest is carried out during execution by
routines that are invoked by calls compiled into the user program. The
efficiency of this approach is seen when one compares it with the more usual
strategy in which the operating system checks all supervisor calls for validity.
For example, in the latter case, a call upon one level of the supervisor from
a higher level of the supervisor would result in an unnecessary check, and
every attempt to use any resource would be accompanied by a check that the
resource has been allocated to the prospective user; in most operating
systems such checks are frequently expensive.

E. PERFORMANCE

Perhaps the best measure of the success of the system is the extent to which
it has influenced other operating system designers. The use of semaphores
for synchronization is widespread as is admiration for the hierarchical
structure. What is surprising is that the structure has rarely been copied.
B. J. Moore has remarked that “there seems to be a cosmic force that makes
operating systems monolithic”—perhaps the self-discipline of system
designers needs to be reinforced by suitable design language notations in
order to oppose this force successfully!

II1. PrOCESS DISPATCHING

A. OBIECTIVES

A principal objective in dispatching is to execute short jobs quickly by letting
new jobs receive priority over old jobs for a time. Another important



154 R. M. MCKEAG

objective is to keep the peripheral devices busy by letting peripheral bound
jobs take precedence over processor bound jobs. Both these aims are achieved
by favouring jobs that have used little processor time in the recent past.

In dispatching it is important to minimize the chances of bottlenecks
developing, and to this end the dispatcher services system processes,
especially those at a low level in the hierarchy, before user processes; it
can also give preferential treatment to processes while they are obeying
critical sections.

B. MAIN FEATURES

The dispatcher maintains a priority-ordered dispaich queue of all the
processes ; each time the dispatcher is entered it selects for processing the
highest priority process ready to run. Every two seconds the dispatch queue
is reordered : the drum process remains at the head followed by the console
process and then the other peripheral processes; at the tail are the user
processes: for each user process an exponentially damped count of the
processor time it has used is maintained and the processes are ordered by
increasing time count. In addition, there is a facility whereby a process that
wishes to receive preferential treatment for a short time, typically while
obeying a critical section, may be marked as “urgent”; the action of the
dispatcher is thus modified to search for the highest priority urgent process
before attempting to run any of the non-urgent ones. If there is no process
ready to run then the dispatcher goes into an idling loop.

The nucleus may be entered as the result of an interrupt: either a clock
interrupt in which case the dispatch queue is reordered, or a peripheral
interrupt in which case the suspended process awaiting this interrupt is
released. In either case the dispatrcher is then invoked to select a process to
run.

The nucleus may also be entered as a result of a process wishing to perform
a V-operation on a semaphore. If there is a process waiting on this semaphore
then the highest priority urgent process or, failing that, the highest priority
non-urgent process that is waiting is released. The process performing the
V-operation may take this opportunity to dispose of its “urgent” status.
Finally, control returns to the original process unless there is now the
possibility that another process has higher urgency or priority in which case
the dispatcher is invoked.

The nucleus may also be entered by a process wishing to perform a
P-operation on a semaphore. If the P-operation is unsuccessful the process
marks itself as “suspended™ and invokes the disparcher. Before doing so,
however, it may take the opportunity to mark itself as “urgent”.
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C. DATA STRUCTURES

Each of the 15 entries in the dispatch queue is a pointer to the base of the
stack of the corresponding process. The base of each stack contains certain
control information in fixed positions: this includes an indication of the
urgency of the process and whether it is active or suspended and, if the latter,
a pointer to the semaphore on which it is waiting. When a process is
suspended the values of its registers are preserved in the base of the stack.
The other item of control information stored in the base of the stack is an
exponentially damped count of the processor time used by the process; it is
this value that is used when the dispatch queue is re-ordered every two
seconds.
The time count for process i at time t, represents the following value:

Lo

time;(to) = o:j filh)e= "0 dr
— 0
where o is the damping factor and f;(t) takes the value 1 while process i is
running and O while any other user process is running. It is assumed that
time ¢ increases when a user process is being executed and remains stationary
otherwise. The values of “time” are only relevant for user processes since
they are the only processes that are rearranged in the dispatch queue.
After a time interval Ar during which process j is running:
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Rather than update all values of time; we only update time, so:
; time; i#j
time; 1= < . 5 o
time; +(e***— 1) =4
Now we may make the approximation:
M —1 = oAt

and so the only computation necessary is to add o Az to time; after process j
has used At units of processor time. As o is chosen to be 27'% and Ar < 200
(units of 10 ms), the maximum value of the main error term introduced
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by the approximation is given by 3(x At)? ~ 0-02 units where o Ar = 0-2 units.

On every clock interrupt each time; is normalized by division by ng At
to prevent overflow. The effect of this implementation is to record for each
process between eight and 10 seconds of history. One result of this is that
each new job starts life with a high priority since it takes several seconds
for the tape containing a new job to be read in and during this period
the value of the job’s time count remains almost stationary while those of
the other processes increase. When the system is initially started, time; = 0-2
for each of the five user processes.

D. PERFORMANCE

The dispatching algorithm is simple enough for its effects to be readily
apparent. Firstly, urgency can reduce the chance of bottlenecks developing
in critical sections. Secondly, the grain of time rule is respected by keeping
supervisor processes at the head of the dispatch queue. Thirdly, peripherals
are kept busy, users are not indefinitely ignored, and short jobs receive fast
service because of the periodic re-ordering of the user processes on the
dispatch queue. Fourthly, the overheads can be seen to be small but this is
because there are only five user processes to be sorted; if there were con-
siderably more then it would be cheaper. but probably just as effective, to
perform a partial sort rather than a complete sort.

IV. STORE MANAGEMENT

A. OBJECTIVES

The purpose of the store management system is to present to its users (i.e.,
all processes at higher levels of the hierarchy) a large uniform virtual store
that is both larger and easier to use than the two-level physical store.

The ways in which the virtual store is used have been very carefully
designed to respect the physical limitations on the amount of backing store
and main store available.

B. IMPLEMENTATION OF VIRTUAL STORE

1. Main Features

The store management system provides a large virtual store of 512-word
pages which are mapped onto the smaller real stores (consisting of core and
drum) which are divided into 512-word “page frames”. A main frame table
and a drum frame table are maintained to record the states of the main store
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and drum store frames. In addition there is, for each virtual page that has
been declared, a descriptor indicating the location of the frame, if any, in
which it is held. The movement of pages between main store and drum is
carried out by a drum process. The page replacement strategy is “least recently
used”.

The paging system is implemented entirely by software: each program
ensures that the pages it wishes to use are in main store at the right times,
and this entails explicit invocation of the drum process when pages have to
be read from or written to drum the code to cater for such page accesses is
generated by the compiler.

2. Data Structures

(a) Dirum Store. The drum consists of 512 tracks, each of which contains two
page frames. The positions of the frames are staggered around the drum so
that the frames pass the heads in order of (cyclically) increasing frame number.
The address of the first location of frame f is given by word f of track
(f mod 512).
The drum frame table, which is resident in main store, may be represented

as follows:

drum frame table : array drum frame number of drum frame state
where :

type drum frame number =0 ... 1023

type drum frame state = ( free, in-use).
The drum frame table is arranged in such a way that a simple algorithm
using normalizing orders can quickly discover which free frame will next
come under the writing heads; in this way, by taking advantage of the fact
that logically contiguous pages need not occupy contiguous drum frames,
it is possible to minimize the delay in writing a page to drum.

(b) Main Store. The main store originally consisted of 32K words but was
later increased to 48K. The main frame table contains, in general, for each
main frame a four-word entry describing the state of that frame. The excep-
tions are the 23 frames at the lower end of main store as they contain
resident supervisor pages and so their states never change. The main frame
table, which is resident, may be represented as follows:
main frame table: array main frame number of
case main frame state :( free, in-use, incoming, victim)
of
free: (next: (main frame number, null));
in-use: (copy: (drum frame number, null);
toek: 0. 15
time:0...o0);
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incoming : (copy: drum frame number ;
lock 00 15;
time:0...00);
victim: ()
end
where:
type main frame number = 23 ...95 (say).
It may be seen that each main frame has one of four states:
(i) Free—All the free frames are chained together to form a stack, the
top element of which is referenced by a free frame pointer:

free frame pointer: (main frame number, null).

(ii) In-use—The page occupying an in-use frame may be unique, or it
may have a copy on the drum, thus by-passing the need to dump the
page if it is to be discarded. If the page is altered in any way the
corresponding drum frame is freed and the “copy” field is set to null.
Certain pages must be locked down in main store: for example those
associated with dispatching and store management, stack pages and
those pages containing code currently being executed ; as the same page
may be used simultaneously by several processes a count is kept of
the number of times each page has been lecked. Locking may also be
used when a process wishes to make, say, one access to an array element
and wishes to ensure that the page is not discarded between checking
its presence and performing the access: if the page is in main store this
may be accomplished by temporarily disabling interrupts but otherwise
the process requests that the page be read and promptly locked, and
then, after the array element has been accessed, the page may be unlocked
(as far as this operation is concerned) by decrementing the lock count.
Another use of locking is by the ALGOL system which is allowed to
lock a second page of code in addition to the one currently being
executed: this is to speed the use of simple parameter subroutines.
Whenever a main frame is accessed, a “timer” is incremented and its
value is recorded in the main frame table entry for that frame: this is
used by the “least recently used” algorithm when selecting a page to be
discarded.

(iii) Incoming—Such a frame is awaiting the transfer of a page from
drum and so is in transition from “free” to “in-use”.

(iv) Victim—At any one moment there is one and only one “victim”
frame; its use 1s described below.

(¢) Descriptors. As each page is declared, a descriptor is set up for it in
main store; this descriptor usually resides in the same place throughout the
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lifetime of the page and so each page is identified by the address of its
descriptor. The descriptors of the pages belonging to a process reside in
the 'stack of that process, but the descriptors of pages of input/output
streams (which, for the time being, belong to neither the process that pro-
duced them nor the process that will consume them) are stored in a fixed
area of main store. Consequently, when a process unchains a page from an
inputstream or chains a page onto an output stream it moves the appropriate
descriptor to or from its stack. Descriptors may be represented as follows:
type descriptor = case descriptor state: (none, main, coming, drum) of

none: ();

main: (location: main frame number);

coming : (location: main frame number);

drum: (location: drum frame number)

end.

Initially the contents of a page will be empty and so no frame will be
associated with it. The first time that an assignment is made to the page a
main frame is selected as follows. The selection algorithm produces a
“candidate” which will be a free frame, if there is one, or otherwise the least
recently used frame that is not locked. If this candidate is free or has a
copy on drum then it is immediately chosen, otherwise the current “victim”
is chosen and the candidate becomes the new victim and is written away
to drum. Should reference be made to a page that has been discarded,
that page is read to the victim and a new victim is selected. There may of
course be a delay in using a victim for a new page because its old page
may not have been completely dumped. There is no danger of a program
trying to read the old page back from drum before it has been written
there from the victim because drum transfers are dealt with on a “first come,
first served” basis.

(d) Drum Transfers. A process wishing to read a page from the drum or
copy a victim to the drum communicates with the drum process by placing
a message in a cyclic message buffer and performing a V-operation on the
associated semaphore. All this takes place within a critical section. The
requesting process then waits upon its private semaphore until its request
has been dealt with. With N concurrently running programs a buffer with a
“capacity of N+ 1 messages 1s always sufficient. It was found that the extra
complexity involved in using a smaller buffer was nearly prohibitive. Assoc-
1ated with the cyclic message buffer are two pointers: an insertion pointer
which is updated in the critical section in which messages are added to the
buffer, and an extraction pointer which-is updated by the drum process:

message buffer : array message number of (message, null);
insertion pointer, extraction pointer: message number
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where:
type message number = 0...N;
type message = record
semaphore of calling process;
read page: case transferl: (yes, no) of
ves: (source: drum frame number;
destination: main frame number);
no: ()
end;
write page: case transfer2 : (yes, no) of
ves: (source: main frame number;
destination: drum frame number);
no: ()
end
end.
Each message consists of two parts : the first is concerned with the acquisition
of the required page (or empty frame) and the second is concerned with
the disposal (if relevant) of the page residing in the newly selected victim
frame. The requesting process supplies the identity of its own semaphore
so it can be woken by the drum process between dealing with the two
parts of the message.

C. DISTRIBUTION OF VIRTUAL STORE

1. Main Features

Although the number of pages of virtual store that may be declared is un-
limited, the number that may be in use at any moment is limited by the size
of the drum. Of these latter pages a certain number are permanently reserved
for system and library routines and so on. Of the rest, some are free for
allocation, and each of the others belongs to one of three categories according
to whether it has been allocated to an input stream. an output stream or
a user program. The numbers of pages belonging to these categories, or
combinations of these categories, are restricted by policy decisions that reflect
the physical limitations; consequently the programs that use the virtual
store must cooperate with one another to observe these restrictions.

Thus, a process wishing to increase the number of pages belonging to one
of these three categories will only do so provided that the limits will not be
exceeded, if this is not possible the process suspends itself. Conversely,
removal of a page from some category does, in general, impose upon the
removing process an obligation to arouse a waiting process, if there is one.
In order to ensure that no process is held up permanently in this manner,
the policy adopted is to ensure that output continues as fast as possible,
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and to impose upon the output processes the obligation to keep the other
processes as active as possible. For a detailed description of this strategy
for balancing the use of the virtual store, see Bron (1972).

2. The “Sugar Lump”

As described above, about a hundred pages are used by permanent material
such as library routines and so forth. Of the rest, roral pages say, some
will be free and each of the others will belong to one of three categories:

i = number of pages belonging to input files,
o = number of pages belonging to output files,
p = number of pages belonging to user programs.

These three quantities are constrained to satisfy four relations:

i+o+p = total

i+o = maxio

I +p = total—reso

i < maxio—reso

The first restriction arises from the physical size of the drum. The second is
due to the fact that, for reasons of simplicity and efficiency, the descriptors
to pages belonging to input and output files are kept in main store and are
limited to a certain number, maxio, which is chosen to be 256 this represents
a quarter of the drum and is sufficient to buffer a complete reel of paper
tape. The third restriction is due to a wish to reserve a certain number of
pages, reso, for output use: the reason for this is that it is important to
ensure that when storage is in short supply it is still possible for the output
peripherals to continue working and thus reduce the danger of store
exhaustion; the value of reso is chosen to be 64, in other words a quarter
of the input/output area, and the part that these pages play will be described
later. The fourth restriction reinforces the third by ensuring that in addition
to the reso pages that are reserved for output buffering there are also reso
descriptors in the input/output area.

The state space delimiting the range of values of (i, 0, p) may be illustrated
by Fig. 1, termed the “sugar lump”, in the accompanying diagram. The faces
are the planes:

i =1

) =0

p=20
I+o+p = total

i+o = maxio
i  +p=total—reso
i = Maxio—reso
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ip joP

reso

F1GURE 1. The sugar lump.

The sugar lump is a state space, and any process that causes a change of
state, and thus a movement within the sugar lump, must ensure that the
bounds of the space are not violated. For this purpose the following four
quantities are introduced to denote the amount of “elbowroom™ left in the

four inequalities, that is they relate to the numbers of pages currently free
for specific purposes:
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]

fiop “free for input, output and programs” (initially = rotal),

fio  “free for input and output” (initially = maxio),
fip  “free for input and programs” (initially = total — reso),
fi “free for input” (initially = maxio— reso).

Sequencing of regions of program that increase or decrease these quantities
is done in such a way that the quantities never become negative. The six
possible changes of state that may occur, together with the associated
changes of the four quantities are as follows:

(1) p-increase in a user process —decrease fip and fiop.
This occurs when an array page is first used. Since stack pages are locked
down in main store, only the array pages and pages containing program
code contribute to p; when the compiler generates code it stores it in an
array.

(i1) p-decrease in a user process —increase fip and fiop.
This occurs when arrays are discarded at block exit, when code pages are
discarded at the end of a program or when pages of input file are discarded
after being processed.

(iii) i — p transition in a user process—increase fio and fi.
This occurs when a program unchains a page from an input stream, pre-
paratory to processing it; the new page is treated as part of an array.

(iv) p — o transition in a user process—decrease fio and increase fip.
This occurs when a program chains a page onto an output stream from
an array.

(v) i-increase in an input process —decrease fiop, fio, fip and fi.
This occurs when an input process adds a newly filled page to an input
stream.

(vi) o-decrease in an output process —increase fiop and fio.
This occurs when an output process removes one or more pages from an
output stream preparatory to emptying them.

3. The Strategy

As mentioned above, any process contemplating causing a change of state
must respect the bounds of the sugar lump. Two cases arise, according to
whether the face encountered is, on the one hand, the i or ip face or, on
the other, the io or iop face.

(1) The i and ip faces—When one of these faces is encountered during an
i-increase or p-increase there is little to be done apart from signalling “store
exhaustion”. The reason is that one cannot rely upon some other user process
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to perform an i — p transition or a p-decrease: the other processes may
themselves need to wait for a new page to be input or for a new program
page to be made available. The strategy must therefore be to keep away
from these two faces where possible. This is done in two ways. Firstly,
each user process will warn the operator if it is getting near to the ip face
and he may act accordingly. Secondly, each input process normally reads
at full speed but will pause if it finds that the input stream it is producing
has reached half the size of the space still available for input.

(ii) The io and iop faces—When one of these faces is encountered during a
p-increase, a p — o transition or an i-increase, the process may safely suspend
itself if it can be sure that there will be an o-decrease to relieve the shortage
of pages. To ensure this it is necessary to guarantee that at least one
output process is active while 0 > reso and then we may leave to that process
the task of waking suspended processes. In practice, although it is not strictly
necessary, this task is also performed by each user process whenever it
engages in an [ — p transition: this can enable a suspended process to
continue sooner than it might otherwise have done. A user process per-
forming a p-decrease is not so burdened, however, as this change of state
occurs comparatively frequently.

In order to guarantee that output will continue when o > reso it is necessary
to draw a distinction between “active output” and “passive output”. The
former consists of all those pages that the system knows it can output if
necessary, while the latter consists of those whose output cannot be guaran-
teed because there is doubt as to whether the appropriate device will be
available. Thus, in order that the system can guarantee output if o > reso,
it must ensure that the total amount of passive output is limited to maxpas,
where reso— maxpas is sufficiently large for active output to continue. Now
the basic unit of each output stream depends upon the associated peripheral
device: for punches and the plotter it is a single page but for the printer
it is up to four pages (corresponding to a sheet of printer output), and so
maxpas is chosen to be reso—4. The system thus imposes an upper bound,
maxpas, on the number of passive output pages and forces output to take
place if o > maxpas. That this is always possible will be shown in the section
on Input/Output Control in which the classification of output as active or
passive is treated in detail.

D. STORAGE OF ARRAYS

Many paged operating systems succumb to thrashing when faced with large
matrices or other two-dimensional arrays. If the elements of such an array
are stored by row but accessed by column (or vice versa) then the entire
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array may have to be kept in main store. In the T.H.E. system this serious
problem is avoided by storing the elements by sub-array as in the example
in Fig. 2. The example shows a matrix of 128 x 128 real numbers, each
of which occupies two words. By storing a 16 x 16 sub-array on each page,
only eight pages are required in main store at a time if the array is being
accessed by row or by column; if the array were stored by row then two
rows would be stored on each page and the numbers of pages that would
have to be in main store would be one if access were by row or 64 if access
were by column. Storage by sub-array is also cheaper when relaxation
techniques are applied to the array. There is a further benefit: it is generally
cheaper on virtual store if the array is a locally dense sparse matrix: for
example a lower or upper triangular matrix would only use 36 pages instead
of 64.

In principle this technique could be used with arrays of any number of
dimensions but in this system it is only used for two-dimensional arrays.

0 15 j': 82 127
0
0 1 4 5 16 17 20 21
15
2 3 6 7 18 L) 22 23
=37 8 9 12 13 24 25 28 29
10 1] 14 15 26 47 30 31

32 33 36 37 48 49 52 53

34 35 38 39 50 51 54 55

40 41 44 45 56 57 60 61

42 43 46 47 58 59 62 63

127

FIGURE 2. Array storage.
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Address calculation is a simple matter using Dijkstra’s “zip fastener” tech-
nique which has been described by Hoare (1972). The numbering of the
pages is shown in the diagram and the numbering of the array elements
within each page is similar. The address of any array element may be obtained
by interleaving the bit patterns of the binary representations of the subscript
values of that element. For example the address of the element with subscripts
i = 37 and j = 82 may be obtained as follows:

i—387— 0 1 0 0 1 0 1
J=82= 1 0 1 0 0 1 0
0

page 25 element 38

E. PERFORMANCE

The original configuration with 32K words of main store was inadequate
because of the size of the ALGOL compiler. Since an extra 16K words
were added the system has performed well with very high processor utilization
and so no significant improvement may be expected from enlarging the
main store further. :

The cost of the “least recently used” page replacement algorithm is accept-
able because only 70 or so entries in the main frame table have to be
scanned : if there were more it would be necessary to use a cheaper algorithm
but it is not thought that such an algorithm would be significantly less
effective.

Thrashing occurs perhaps five times a year and this is quite acceptable.
It happens so rarely because of the way that two-dimensional arrays are
stored, and because the number of user programs is limited to five, and
because it is a simple matter for the operator to avoid running several large
jobs together.

The “sugar lump” strategy certainly makes the most of the limited backing
store and is a delightful illustration of the care that has been put into the
design of the T.H.E. system. To quote Bron (1972): “The degree of structural
complexity involved in the virtual memory allocation schemes designed by
our five-man team seems pretty close to the limit of what can be convincingly
conceived. It is not likely that increasing the size of the design team would
allow for the design of significantly more complex structures.”
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V. ConNsoLE CONTROL

A. OBIJECTIVES

The purpose here is to share the operator’s console amongst the processes
that wish to converse with the operator, and thus to give each of these
processes theimpression that it has its own console. For reasons of simplicity
the forms that conversations may take are restricted.

B. MAIN FEATURES

The essential features of the console control system have been. presented
in a simplified form by Dijkstra (1968a). He postulates a number of processes,
each of which can converse with the operator. The forms that these con-
versations may take are as follows. The simplest conversation consists of a
single message sent to the operator by process i and requiring no answer,
thus:

M(i)
Alternatively the process may wish to ask the operator a question :
Q(i)
to which is expected one of several answers, for example:

YES
or: NO

The operator, however, may not be in a position to answer immediately
“but he may wish to release the console for further conversations pending
his delayed reply, so he may type:

WAIT

The conversation thus remains open until the operator subsequently com-
pletes it by typing:

YES(i)
or: NO(i)

where it is necessary for him to identify the process he is addressing as
there may be several outstanding conversations. Again the reply

WAIT

is acceptable to indicate that the operator has changed his mind since
indicating that he wished to type.
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Two further rules are imposed. Firstly, when the console becomes free,
the operator, if he wishes to complete an outstanding conversation, should
have priority over processes wishing to start new conversations. Secondly,
when the operator types something that is rejected as inapplicable, he is
given the opportunity to try again.

These conventions dictate the main features of the console control system.
The first point is that the operator must have some way of announcing his
intention to type and he must be able to make such an announcement even
if a message or question is being output to the console; he must also be
able to detect when the machine is ready to accept his intervention. The
second point is that when the operator resumes an outstanding conversation
by typing a “delayed” answer, there may be several processes awaiting such
replies, or there may be none; it is therefore necessary to introduce a console
process whose sole task is to accept the operator’s announcement that he
wishes to type, to read his message when the console is free, to check the
message for applicability and to route it to the appropriate process.

C. NORMAL CONVERSATIONS

Since the console is shared by a number of processes it behoves a process
wishing to output a message to reserve the console first and afterwards to
release it again, thus:

... Feserve; output message; release;. ..

where the procedures reserve and release, operating under the protection of a
mutual exclusion semaphore, inspect and update the common state variables.
There are two main state variables:

state: ( free, output, immediate reply, delayed reply);
operator priority: Boolean.

The former indicates whether the console is reserved for use and, if so, for
what purpose, while the latter is set to true if the operator indicates, while
output is in progress, that he wishes to type; when the console is next free,
operator priority is set to false and state is set to delayed reply. While trying
to reserve the console, a process may find that state # free in each case it
must await permission to start its conversation, releasing the mutual exclu-
sion semaphore for the duration of the wait.
Similarly a process wishing to ask a question must first reserve the console

and, after typing the question, must wait for a response from the operator:

reserve;

output question (i);

case response of
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YES: positive reaction ;
NO: negative reaction
end.
The body of the function response involves waiting for an answer which
may be delayed by the operator typing “WAIT” and replying later : in either
case the console must be released after the answer has been supplied. The
procedures reserve and release and the function response may thus be
programmed as follows:
procedure reserve;
\if stare # free then wait until conversation may start
state:= output} ;
procedure release
it operator priority then {operator priority: = false;
state: = delayed reply|
else {srare:= free;
signal that conversation may start! ;
function response (me: process identifier): (YES, NO);
begin state : = immediate reply:
who := me;
wait until conversation is over and who = me;
response 1= reply;
release
end
where we have introduced two new state variables, who and reply, which are
inspected by processes awaiting replies and are set up by the console
process when it accepts an answer typed by the operator.

The console process is cyclic. It spends most of its time waiting for the
operator to announce that he wishes to type. When this happens it inspects
the state variables, using the function state of console, to discover whether the
console is available and, if so, whether an immediate reply to a question is
expected or whether the input is to be treated as a delayed reply to an
earlier question. If the console is not being used for output then the operator’s
answer is read and examined: if it is acceptable then it is transmitted, via
the state variables, to the waiting process; the procedure respond carries out
this latter task. We may program state of console and respond as follows :

function state of console: (output, immediate reply, delayed reply);
begin if state = output then operator priority 1= true;
if state = free then state := delayed reply;
state of console := state
end ;
procedure respond (answer: (YES, NO); whom : (process identifier,
immediate));
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begin if whom # immediate then who := whom;
reply := answer;
signal that conversation is over
end.
The outline of the console process is:
console process: process
cycle
begin wait for incoming message ;
case state of console of
immediate reply: begin input answer A ;
' case A of
“WAIT”: release;
“YES”: respond (Y ES, immediate);
“NO”: respond (NO, immediate);
other:
end
end ;
delayed reply:  begin j: process identifier,
input answer A ;
" case A of
“WAIT”: release;
“YES(j): respond (YES, j);
“NO())”: respond (NO, j);
other:
end
end ;
output:
end
end console process.

A semaphore is used to preserve the integrity of the state variables and
so each of the procedures and functions that operate upon them is preceded
by a P-operation on that semaphore and followed by a V-operation. The
semaphore is also released while a process is waiting for a conversation to
start or finish. An array of semaphores represents “conversation may start”
and “conversation is over and who = me” with an array of integer variables
denoting which, if either, of these events each process is awaiting.

D. ABNORMAL CONVERSATIONS

Normally conversations are under the control of the processes, not the
operator; but occasionally the operator may wish to stop a user process
either temporarily or permanently and this is not a message that the process
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is expecting. What happens is that the console process recognizes a “STOP”
message and, by inserting a P-operation in front of the next instruction
to be executed by that process, obliges it to wait on a semaphore.

Fither a “GO” message or an “OUT” message is now applicable. On
receiving the former the console process performs a V-operation. On receiving
the latter the console process changes the value of the instruction counter
of the suspended process to point to a location where the finishing rites are
initiated ; it then performs a V-operation to enable the user process to
terminate itself.

This, however, is not the complete picture since a process may have
obligations to fulfil and therefore cannot be thrown out immediately. The
concept of mortality is therefore introduced: if a user process is mortal it
may be stopped, if immortal then the console process deals with the “STOP”
message by setting to true a variable, stop request, of the user process: the
P-operation is now delegated to the user process itself, which, when it returns
to mortality and finds stop request, suspends itself. Since sections of im-
mortality may occur in nested fashion, each user process has an immortality
counter ; when this counter goes to zero the process becomes mortal again.

E. PERFORMANCE

The design of console conversation systems brings with it the dangers of
synchronization errors and large overheads. These have been avoided here
by restricting the forms that conversations may take. Despite this restriction
(or, more probably, because of it) the system is easy for the operator to use
and it permits him to recover readily from his mistakes.

VI InpuT/OUTPUT CONTROL

A. OBJECTIVES

The system presents to each user a number of “streams” for input and
output, thereby abstracting away from the actual peripheral devices. The
extensive buffering of data in these streams enables files to be produced
and consumed smoothly despite considerable differences in speed between
these two operations. The buffering of complete or substantially complete
files imposes a great load on the limited store and so the system endeavours
to maintain a reasonable supply of free page frames for various purposes,
partly by slowing the buffering of input when space is short and partly by
keeping the output devices busy. Generally, peripheral devices are not
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assigned to the output of a file if there is a danger that the output might
last an indefinite length of time but, on the occasions when this is necessary,
care is taken to reduce the likelihood of deadlock.

B. LOGICAL INPUT/OUTPUT

Each user process has available to it two reader streams, two punch streams,
one plotter stream and one printer stream. A user program may send several
independent files in succession to each of its output streams; so such a stream
may contain several files of which some may have been produced by the
current user program with the others having been produced by previous
programs run by the same process. The newest file in an output stream
may perhaps be still incomplete, while the oldest may be in the process of
being printed or punched or plotted. Similarly, a succession of files are read
from each input stream but, as the buffering of an input file never starts
until the user program is ready to use it, such a stream will never contain
more than one file at a time and this will be incomplete, being consumed
from one end while new portions are being read and added to the other
end.

The user process transfers data between its own work area and its streams
a “portion” at a time: generally a portion consists of a page of data but in
the case of the printer it corresponds to a sheet of printed output and
consists of up to four pages. Since the printer switches its attention from
one printer stream to another on a sheet-at-a-time basis an “end of sheet”
marker must be stored in the last page of each portion; the other output
devices work on a file-at-a-time basis and so the user must insert an “end of
file” indication in the last page of each file. During its production and
consumption each portion is treated as an array local to the relevant (user
or device) process.

Chaining portions onto streams or unchaining them from streams involves
no manipulation of the portions themselves but only of their descriptors
which are transferred between the process’ stack and the area reserved for
the descriptors that point to the pages of input/output streams. Fach of the
words in this latter area belongs to a chain, there being one chain for each
stream and another of unused locations. Associated with each stream is a
general semaphore and chaining a portion onto a stream (or unchaining a
portion from it) involves a V- (or P-) operation on the semaphore whose
value therefore represents the length of the stream.

The magnetic tapes are treated a little differently from the other devices
as pages are input or output directly by the user processes, thus obviating
the need for device processes and streams. The only difference that the user
notices is that he has to open and close tape files explicitly.
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C: BEHYSICGAT INPUT/OUTPUT

1. General
The interface between a peripheral device and the process that controls it
consists of two queues made up of a chain of input/output requests linked
together: one queue is of pending requests while the other is of those that
have been completed by the device; this arrangement is illustrated in Fig,. 3.
Associated with the pending queue P; is a general semaphore, p;, repre-
senting the length of the queue and, likewise, the semaphore ¢; denotes the
length of the completed queue, C;.

The four operations on the chain are as follows:
(i) attach request to queue P;; V(p;)

ii) P(p;); detach request from queue P;
iii) attach request to queue C;; V(¢;)

{
(
(iv) P(¢;); detach request from queue C;.

In step (iv) it may happen that queue C; is found to be empty and so the
device process is suspended pending a V(¢;) operation ; this state is indicated
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by a Boolean variable s; whose value is “true” in such a case. Steps (ii) and
(iii) are performed by the channel hardware which also causes an interrupt
if s; is true at the time of a V(c;) operation. The channel hardware uses a
busy form of waiting if unable to perform a P(p;) operation in step (ii). In
step (i) the addition of a request to an empty pending queue means that the
link; pointer to the request at the head of queue P; must be reset by the
process for subsequent use by the device; this link; pointer is normally up-
dated by the device on the completion of a request. For convenience there
are two Boolean variables associated with each device: they take the values
p: > 0 and ¢; > 0 and are implemented as flip-flops.

2. Slow Devices :

For each paper tape reader, two buffers of 24 characters are used in the
manner illustrated above. A reader process packs three characters to a word
and writes these words one by one to its buffer page which, when full, is
attached to the appropriate reader stream. For the plotter and punches the
scheme is the inverse. For the printer the buffering is more complicated
because lines may be double printed—the units of buffering are “completely
specified lines”.

3. Magnetic Tapes

The magnetic tape interface differs from that of the other types of device
in that only one page. is buffered at a time and therefore no device process
is required. For each tape deck the current buffer page is treated as an
array by the user program and is locked down in main store for the duration
of each transfer.

4. Faults

Faults are detected by the device process: after performing P(c¢;) it inspects
the result. Certain types of error (like parity) are treated by retrying a
number of times. Others (like end of paper in the printer) are reported to the
operator. Persistent errors are treated as follows. For the printer (and drum
and console)nothing can be done. For the punches and plotter the remainder
of the file is symbolically processed and the operator is told which file has
been lost. If the faulty punch or plotter is the last one of its kind left it
will symbolically process all of the files in all of the corresponding output
streams. Finally, the device goes out of operation until the operator has
brought it back into service again. On magnetic tape errors the faulty deck
is removed from service and the user program that was using it is dis-
continued. Magnetic tape decks are the only devices for which faults are
reported back to the user program as the programmer may wish to re-use
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part of the tape. In particular, whenever a user finds an untimely end, the
state in which each open tape file is left is reported back to him.

€. DEVIGE SCHERULING

1. Magnetic Tapes

Magnetic tape decks are allocated statically and released dynamically. That
1s to say, a program will not be accepted for execution unless all the decks
it requires are available; and the program may reduce its claim when-it no
longer needs a deck and any remaining claim will automatically be reduced
to zero when the program terminates.

2. Readers

The normal state for an idle reader is “ready and willing to read”. On
being supplied with a tape (assumed to be a job tape) a reader process
searches for some user process with no program to run and supplies it
with the tape. If there is no free user process then the reader process waits
until one becomes free. Thus all the operator has to do to run a job is to
place the job tape in a free reader.

The other common requirement is that a running user program may want
a data tape. It waits until some reader is free, reserves it and asks the
operator to put the required tape in the specified reader. Generally the
operator will do as requested and will say so to the user process. Occasionally,
though, he may reply that the required tape is not immediately available,
in which case the user process releases the reader and suspends itself until
the operator signals that the tape is available, whereupon the business of
selecting a reader starts again.

A reader process, once it has embarked upon the input of a tape, attempts
to keep its stream reasonably full by reading at full speed and by pausing
when there is a shortage of space: this happens when the amount of space
still available for input is less than double the space occupied by the reader
stream in question. However, if there is an outstanding request for a free
reader then all the readers continue at full speed until one has come to the
end of its tape and can be re-allocated. Such a request for a tape reader
may come from a user process wanting a data tape or it may come from
the operator urgently wanting to run a job.

Certain incompatible states may arise and it is up to the processes con-
cerned to detect and resolve these incompatibilities. This is done by, say, a
reader process examining the state variables of all the user processes on
appropriate occasions, and vice versa. The incompatible states are as follows:

(i) a reader may have been supplied with a job tape, and a user process
may be idle waiting for another job;
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(ii) a user process may be waiting for a reader, and a reader may now
be free.

(ii1) there may-be an outstanding request from the operator to disconnect
a reader, and the reader may now be idle or may have been given a job
tape but cannot find a user process ready for it.

3. Printer
The printer process examines all the printer streams in its attempt to select
a completely generated file, favouring the stream with the maximum value of

(stream length, in portions — time, in portions, that last portion was attached).

The selected file is then output as fast as possible.

If there is no complete file the process waits for one unless there is a
shortage of space in which case an unfinished file is selected using the same
criterion as before. For the purposes of this strategy, space is deemed to be
in short supplyif the total number of pages containing printer output exceeds
the number of pages, fpas, still available for passive output. (Recall that in the
section on Store Management a distinction was drawn between active and
passive output and that an upper limit, maxpas, was imposed on the latter.
The difference, fpas, (initially = maxpas) is introduced to denote the number
of pages “free for passive output™.)

If, during the printing of an incomplete file, the user process finishes
producing the file then the complete file is output without interruption.
Otherwise, the printer process attempts to output 20 consecutive sheets from
the file, pausing when necessary for production to keep up with consumption.
At the end of the 20 sheets—or earlier, if a shortage of space for passive
output is detected during one of the pauses—the printer process selects
another file or possibly even the same file, using the same criteria as before.

As a consequence of this strategy, if the printer process suspends itself it
must be reawoken as soon as there is a shortage of space for passive output,
as soon as a printer file has been completed, or as soon as the portion for
which the printer is waiting has been produced. The onus is on the process
that causes one of these changes of state to detect that the printer is waiting
and to restart it.

4. Flotter and Punches

(@) Scheduling Policy. A plotter or punch process generally attempts to select
a finished file for output and, if there are several streams that have not been
selected for output and yet contain finished files, the process chooses the
one with the largest value of

(stream length, in portions — time, in portions, that last portion was attached).
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Should there be none, the process suspends itself unless some other user
process is being held up by a shortage of space for passive output: in such a
case the device process attempts to relieve the shortage by selecting an un-
finished file, provided that no danger of deadlock arises (this is checked by the
“banker’s algorithm” which is described later). The stream selected is the one
with the largest unfinished file or, failing that, a stream that would contain
such a file were its user process not suspended due to the shortage of space
for passive output. Having selected a finished or unfinished file the process
plots or punches it as quickly as possible.

If a device process suspends its activities because of a lack of suitable
candidates for output it must eventually be reawoken when a user process
finishes producing a file which is then eligible for selection or when there is a
shortage of space for passive output or when some unfinished file that is
currently being output is finished and the banker’s approval for the selection
of another unfinished file is consequently forthcoming.

(b) Passive Output. The distinction between active and passive output has
already been drawn : the former consists of all those pages that the system
knows it can output if necessary, while the latter consists of those whose
output cannot be guaranteed because there is doubt as to whether the
appropriate device will be available. More specifically, only pages belonging
to plotter or punch files contribute to the amount of passive output as the
printer can, when necessary, switch from one file to another and back again
and therefore cannot be held up indefinitely. All pages belonging to punch
and plotter files are active if there is at least one appropriate device that
can, within a finite time, be ready to output them: included in this category
are all files that have already been selected for output and also all unselected
but finished files for which there is at least one device of the right type that
has not tied itself up for an indefinite period by embarking upon the output
of an unfinished file. It follows that if all devices of a particular type (punch
or plotter) are outputting unfinished files, all other files of that type are
passive. Furthermore all unfinished unselected files also contribute to the
amount of passive output since their selection for output is subject to
approval by the banker’s algorithm and such approval cannot be guaranteed
in advance.

As already described, an upper limit, maxpas, has been imposed on the
amount of passive output, and the quantity fpas has been introduced to
denote the number of pages “free for passive output”. The following changes
of state alter the value of fpas and, as printer files do not contribute to
passive output, refer only to punch and plotter files. Note that no active
page ever becomes passive; this is ensured by selecting unfinished files for
output only when there are no finished files.
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(i) File selection by an output process: the selection of a finished file in
preference to an unfinished one avoids the possibility that an unselected
finished file would have to change from active to passive if all the appropriate
devices started to output unfinished files; in the absence of a finished file
the selection of an unfinished file gives rise to:

increase fpas by the size of the selected file.

(ii) File completion by a user process: when a selected file is finished
all finished files for devices of the type in question can change from passive
to active: g

increase fpas by the sizes of those finished files.
If, on the other hand, the newly finished file has not yet been selected for
output then its pages become active:
increase fpas by the size of the newly finished file
or stays passive, depending on whether or not there is a device of the right
type that has not been assigned to the output of an unfinished file.

(iii) p — o transition in a user process when a page is chained onto a

passive (i.e., unselected) file:
decrease fpas.

During a p — o transition it may prove impossible to decrease fpas because
the limit for passive output may have been reached. Eventually, however,
either an unselected file will be finished and its passive pages will become
active, or else all active output will be disposed of and an unfinished file
will be selected and its pages will cease to be passive.

(c) Banker’s Algorithm. There is a danger with dynamically allocated non-
pre-emptible resources (in this case the plotters, the punches and the readers),
that a deadlock may occur. If, for example, each of two processes needs
both of two resources, a deadlock or “deadly embrace” results if each process
has one resource (which it has no intention of releasing) and requires the
other (which is not available). The banker’s algorithm is designed to avoid
such a situation—it is due to Dijkstra (1968a) and has been extended by
Habermann (1969).

The basic problem may be expressed as follows. A banker has a finite
capital expressed in florins. He accepts any number of borrowers, of whom
each has a loan which may be decreased or increased in units of a florin
up to a maximum pre-stated need, which must not of course exceed the
banker’s capital. Each borrower guarantees that he will eventually return his
complete loan. When asked for a florin the banker must decide whether the
resulting situation would be safe from the possibility of deadlock; if not
the borrower must wait to have his request granted.

To decide whether a situation would be safe the banker must check whether
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all transactions are able to finish. The algorithm starts by inspecting whether
or not at least one borrower has a claim (claim = need— loan) not exceeding
the banker’s cash (cash = capital — Zloan). If so this borrower can complete
his transactions and so the algorithm investigates the remaining borrowers
as if the first one had finished and returned his complete loan. The situation
is safe if all transactions can be completed.

In practice, as L. Zwanenburg has pointed out, the only situations to be
investigated are those where, starting from a safe state, borrower k has asked
for a florin. If this borrower is able to complete his transactions the situation
is known to be safe. An algorithm for this case is given below; there are
assumed to be a maximum of n borrowers.

function safe (k: 0...n—1; cash: integer): Boolean;
begin able to finish: array 0...n—1 of Boolean;i:0...n—1;
fori:=0...n—1do able to finish [i] := false;
repeat i :=k; vepaid:=fals
repeat if able to finish [i] or claim [i] > cash
theni:= (i+1) mod n
else [able to finish [i] := true;
cash := cash+ loan [i]]
until i = k or able to finish [i]
until i = k;
safe := able to finish [k]
end

This algorithm is readily extended to deal with several “currencies” or
resource types. This is necessary in the T.H.E. system where the plotter and
the punches need the approval of the banker before embarking on the output
of unfinished files.

Readers are not subject to the banker and so the danger of deadlock
exists. Bron (1972) has explained that it was decided not to burden the
user programmer with the need to drop his reader claim explicitly and
that the alternative of maintaining the claim over the lifetime of the program
would be unduly restrictive.

It should be noted that the banker’s algorithm takes no scheduling policy
decisions—it merely checks whether a particular request is safe; there may
be several safe requests.

E. PERFORMANCE

At first glance the use of the multi-currency banker’s algorithm appears
to be expensive, but in this system it is designed to be very rarely invoked
and, when it is, few resources and processes are involved. Although readers
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lie outside the banker’s algorithm they have never been the cause of a
deadly embrace.

Important though the avoidance of deadlocks may be, the avoidance of
near-deadlocksis at least as valuable. This is the justification for the carefully
designed algorithms that schedule the use of the peripheral devices and the
virtual store. They are designed to ensure that the system will continue to
function well when demand for devices or storage is high or is unusually
biased towards a certain type of device or category of storage.

The unconventional but effective decision to treat the printer as a pre-
emptible device, by scheduling it a sheet-at-a-time rather than a file-at-a-time,
places only a negligible burden on the operators since very few files are ever
split. ;

An advantage of the scheme whereby input and output streams are buffered
in the virtual store is that frequently the pages being input or output never
need to be dumped onto backing store.

At a lower level, the semaphore interface between the peripheral devices
and the computer leads to a worthwhile reduction of overheads when com-
pared with more conventional systems.

VII. SyYSTEM MAINTENANCE AND MONITORING

A. RESTARTS

The operating system, including library routines, is initially and rapidly
loaded into the computer from magnetic tape. There is no other form of
restart since there is no file store to maintain and jobs are not stored in the
computer prior to being scheduled. Should a system failure occur, the jobs
currently running are lost and will have to be re-run; also the outputs of
previous jobs may not have appeared and are thus lost. The accounting
information in the system log is also lost.

System failures are rare and are generally due to hardware faults. However
if the operator deliberately chooses to let one or more programs acquire too
much store the system may fail owing to a shortage of store. Furthermore,
as has been explained, a deadlock may be caused by requests for tape readers
but this has never happened in practice.

B. LOGGING

For accounting purposes the system maintains a log of jobs run, including
a record of the resources used by each. These run statistics are accumulated
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In seven array pages that are permanently present and considered as library
pages; access to them is made exclusive by means of a semaphore.

The system also maintains a record of the amount of time spent on useful
computation and the amount of time spent idling. Apart from this no other
statistics are gathered. However it appears from observation that the con-
figuration is well balanced with satisfactorily high processor utilization—
between 877, and 929 ., according to Bron. Until the main store was increased
from 32K to 48K the shortage of core was the limiting factor.

C. OPERATOR CONTROL

All job scheduling is performed by the operator who attempts to run one
long job and up to three short ones at a time. He may (and should)
terminate any job that runs for too long since it is not automatically aborted.

Each job starts life with an allowance of a certain number of pages.
Should it require more it asks the operator who may grant it as many pages
as he thinks fit or may abort it. The operator is thus given plenty of
opportunity to prevent the system from failing because of a shortage of store.
As Bron (1972) has pointed out, such a shortage usually arises from out-
rageous array growth or uncontrolled recursion, but it only occurs as a
result of concurrently running several genuinely large jobs perhaps five times
a year.

D. MAINTENANCE

The documentation of the operating system is not complete but the designers
wrote down very clear accounts of the most important features of the system
(in particular Dijkstra, 1964, 1965a, 1965b). In those reports they explained
and justified their design decisions, defined their principal data structures and
developed their scheduling algorithms in ALGOL 60. Only a fraction of the
software was developed in ALGOL though and because everything was
implemented in assembly language the software is difficult to modify.

This has not, however, proved to be much of a drawback, partly because
the structure of the operating system lent itself fairly readily to testing, and
partly because sufficient care went into the design and implementation to
ensure that very few mistakes occurred. A certain amount of difficulty was
encountered in writing the ALGOL compiler since, unlike most paging
systems, the paging was visible to the compiler writers who had to incorporate
code to deal specifically with inter-page accesses.

The only errors known to escape the testing stage were either in the
ALGOL compiler (and some of these were concerned with inter-page access)
or in the library of input/output procedures.
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VIII. Grossary oF TErMS LocaL Tto T.H.E.

The T.ILE. terms, where they differ from those used in this chapter, are
given in brackets.

BANKER'S ALGORITHM TERMS:
capital—maximum number of resources available to be borrowed.
cash—number of resources currently available to be borrowed.
need;,—maximum number of resources that may be borrowed by process i.
loan;—number of resources currently borrowed by process i.
claim;—number of resources that may still be borrowed by process i.
console process—|message interpreter| a process that interprets messages
typed by the operator and routes each to its destination process.
dispatcher—a routine that switches the processor from one process to
another.
dispatch queue—|[priority list] a priority-ordered queue of all the processes
in the system.
drum frame table—[drum page table] a table recording the state of every
drum store page frame.
drum process— | segment controller | a process whose task is to transfer pages
between main store and drum store.
free frame pointer—a pointer to the next free entry in the main frame table.
immortality counter—a counter local to each user process and used to note
whether the process is “mortal” (and therefore immediately able to
terminate the user program it is executing) or “immortal” (and therefore
has obligations to fulfil before it can terminate its program).

INPUT/QUTPUT TERMS:

P,—a first-in-first-out queue of requests pending for device i.

C;—a first-in-first-out queue of requests completed by device i.

pi—[AFT,] a general semaphore denoting the length of queue P;.

¢;—[IFT;] a general semaphore denoting the length of queue C;.

link;—a pointer to the head of queue P;.

s;—[LV;] a flip-flop used to denote whether a process is suspended
awaiting the completion of a request by device i; on completing a
request the device causes an interrupt if s; is set true.

main frame table—[core table] a table recording the state of every main
store page frame.

message buffer—a buffer used to pass messages to the drum process; an
insertion pointer to the buffer is used when adding messages and an
extraction pointer is used when messages are removed by the drum
process.
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mutex—a mutual exclusion semaphore used to control access to critical
sections.

nucleus—a routine that fields interrupts, implements semaphore operations
and includes (and invokes) the dispatcher; as such, the nucleus underlies
all the processes in the system.

stop request—a Boolean variable local to each user process and used to
inform that process that it should terminate the user program it is
executing.

SUGAR LUMP TERMS:

total—[tot] maximum number of pages available for holding temporary
material (viz, input files, output files and user programs).

maxio—[transp ] maximum number of pages available for holding input
and output.

maxpas—maximum number of pages available for holding passive output.

reso—minimum number of pages available for holding output.

i—number of pages currently holding input.

o—number of pages currently holding output.

p—mnumber of pages currently holding programs.

fiop—number of pages currently available for holding input, output and
programs. :

fio—number of pages currently available for holding input and output.

fip—number of pages currently available for holding input and programs.

fi—number of pages currently available for holding input.

fpas—number of pages currently available for holding passive output.

In addition, the following general terms, with their T.H.E. equivalents
given in brackets, are used in this chapter: file [document], page [segment],
page frame [page], process [AM (abstract machine)], supervisor process
[CM (constant machine)], user process [ PM (programmable machine)].
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