
Arthur C. Fleck

a personal history view

Computing Reflections

Computing Reflections
a personal history view

Arthur C. Fleck

Professor Emeritus
University of Iowa

Iowa City, Iowa

April 2018

	 ii	

Contents

Acknowledgements iii

Preface iv
About the Author vi

Chapter I: My Initiation into Computing 1
A Serendipitous Choice 1

Getting Serious 3
Chapter II: A History of Automaton Automorphisms 8

The Excitement of New Ideas 8

Basic Definitions 13
Initial Results 16

Ensuing Developments 23
Final Remarks on Automorphisms 28

Chapter III: Programming Languages Thru the Years 30
Linguistic Structure for Computer Programs 30

Settling into an Academic Career 36
Programming Language Proliferation 40

Advancing the Theory of Programming Languages 44
 Evolution of Types and Control Structures 48

Distinctive Language Alternatives 51

Declarative Languages 60
Summary and Conclusions 68

Bibliography 71

	 iii	

Acknowledgements

Special thanks to Edgar Daylight for his early
encouragement to pursue this writing as without that it
would not have come to fruition. I am grateful for the
careful reading and helpful suggestions provided by
Sungwan Kang on earlier versions.

	 iv	

Preface

This treatise sets forth notes and personal impressions on
computing from throughout my career. While pursuing my
education, there were no computer science departments,
and academic opportunities in computing were rare. I
indicate the path I followed and how it led me in a
seemingly preordained way to a career in computing
education.

My career involved both research and teaching, and
efforts on both fronts are discussed in the following. I
always found a natural attraction for more formal aspects
of computing. Initially this was in conceptual models of
computing and the universal conclusions they lead to.
This is reflected in my early research undertaking in
automata theory. But this soon evolved to the more
practical concerns of the character of programming
languages used to express computations, but still with an
analytical orientation involving allied formalisms.

I assess my experience with programming languages
extending back 60 years, and cover both well-known and
some less well-known languages. Over the years a vast
number of programming languages have been conceived
so that even being aware of all their names is a challenge
(e.g., [143]). My writing involves only a small selective list,
and even for those languages that are mentioned, my
emphasis is on the context of my experience with the
language and related personal digressions rather than
comprehensive language coverage. While the sheer
number and variation in programming languages can
appear daunting, I have come to regard the exploration
and evolution of this language diversity as integral to

	 v	

continued advancement in computing, and my comments
are intended to express this perspective in various ways.

Arthur Fleck
April 2018

	 vi	

About the author –
 Arthur Fleck was
born in 1936 in
Chicago Illinois. He
received the
Bachelor’s degree in
Mathematics from
Western Michigan
University in 1959,
and the Master’s and
Ph.D. degrees in
Mathematics from
Michigan State
University in 1960
and 1964,
respectively. After

spending one year as an Assistant Professor in the
Electrical and Computer Engineering Department at
Michigan State, he joined the Computer Science
Department at the University of Iowa. Except for a
sabbatical year at the University of Virginia, he remained
at the University of Iowa. He served as department
chairman there for two terms from 1984 to 1990, and
retired in 2006.

	 1	

Chapter I
My Initiation into Computing

A Serendipitous Choice

I first encountered a computer in 1956. I was a junior
majoring in mathematics at Western Michigan University
and I decided to enroll in a new computer programming
course taught by Mr. Jack Meager. The computer used for
the course was an IBM 650, the earliest mass-produced
computer with nearly 2000 produced between 1954 and
1962. The IBM 650 (see Figure 1) used 80-column punched
cards for input and output, and internal storage was on a
rotating magnetic drum organized into words consisting of
ten decimal (technically bi-quinary) digits. The particular
computer our class used had 1000 words of memory (a
2000 word memory was an option).

Figure 1: The IBM 650 computer (source: Fig. 1 [81])

	 2	

A considerable complication for our class was that at the time,
Western Michigan University had no computer at all available
for student use! Fortunately this class was small (under ten),
and our enterprising instructor arranged for the class to make
after-hours use of the data processing center at Whirlpool
Corporation some 50 miles away. It was amazingly generous
(and brave) of a major corporation to turn a group of
undergraduates loose in their data center, but it was a
fantastic opportunity for us. So twice per week, the class
spent a long evening traveling, using punch card equipment
to prepare, and debugging programs conceived during the
intervening time. Our programming in this course was done in
machine (and assembly) language. Since the opportunities to
“try it” were so few, this extremely limited access to a
computer instilled a lasting appreciation for meticulous care
during program creation. The only ‘text’ I recall for this course
was the machine manual [81].

Machine (and assembly) language is so linguistically primitive
that I question referring to it as a “language”. Assembly
language only provides symbolic reference to op-codes and
memory addresses rather than machine numeric, and it
includes almost no linguistic structure. Better might be calling
these “notations” rather than languages, but that’s not the
usual convention so I won’t protest any further. But issues
concerning the linguistic characteristics of programming
languages become a major topic later.

Western Michigan University had just this one course in
computing at this time. The course was offered in the
Mathematics Department (it would be ten years before
Computer Science Departments began to emerge at U.S.
universities). As a math major I found this to be one of the
most interesting courses I took. I did repeat the course one
additional time (at the instructor’s invitation, but for no credit)

	 3	

and gained some further experience, but there were no other
locally available opportunities at that time. Despite its brevity,
I found this an informative, even compelling, initiation into
computing. However at that point it seemed like an interesting
diversion not at all like a career direction. But the solid
mathematics background I received would serve me well
when later events led in that direction.

A noteworthy coincidence occurred during my senior year at
Western Michigan University. I was invited to join an honorary
science society, and the induction ceremony revolved around
a dinner. The after-dinner speaker at that function was Dr.
Gerard Weeg, a mathematics professor and Computer
Laboratory staff member at Michigan State University. He
was a fantastic after-dinner speaker, brilliantly mixing humor
with an intriguing discussion of computer research projects
taking place in their Computer Lab. It was fortuitous that I had
some background relevant to technical issues in this
fascinating talk that afforded me a deeper appreciation of its
content. Although I had no idea at that moment that either
Michigan State or Dr. Weeg would play any role in my future,
that event turned out to be a harbinger of my future.

Getting Serious
As I neared the completion of my undergraduate degree I was
considering a job offer in industry. But I belatedly decided to
pursue a graduate degree. I applied for admission to several
graduate mathematics programs, including teaching
assistantship applications. My admission applications were
successful, but the teaching assistantship applications were
not. Because of an advising glitch I had to spend an extra
semester and so I finished my undergraduate degree in mid-
year, and the middle of the academic year proved to be an
unfortunate time to seek a teaching assistantship. Since we

	 4	

had already started a family, financial assistance was a
necessity, and the way forward looked uncertain. However, it
was my good fortune that the Head of the Mathematics
Department at Western Michigan University, Dr. James
Powell, learned through personal contacts of the availability of
a research assistantship in the Computer Laboratory at
Michigan State University.

So I submitted an application to the Computer Laboratory at
Michigan State University (MSU) and as fate would have it, in
January of 1959 I entered the graduate mathematics program
at MSU, and began a research assistantship in the Computer
Laboratory under the direction of Professor Weeg! The
confluence of a number of apparently unrelated factors had
combined to lead me to one of a relatively few places at this
time where the pursuit of computing knowledge and
education was the central concern.

The Computer Laboratory was the computing service unit of
MSU. A computer named MISTIC (see Figure 2) had been
built under the direction of Dr. Lawrence Von Tersch, and
became operational in late 1957. Dr. Von Tersch was both
the founder and the current Director of the Computer Lab.
MISTIC was a duplicate of ILLIAC I at the University of
Illinois, and was the first computer on the MSU campus.
MISTIC was a binary machine with 40-bit words and 1024
words of internal vacuum tube memory. This machine was
quite fast for its time – under 100 microseconds for an ‘add’
operation (fixed point, there was no hardware floating point).
Input-output was via paper tape and teletype equipment. Over
the years of its operation, staff at the Computer Laboratory
eventually constructed and added an expanded magnetic
core memory, and connected punched card equipment for
input-output.

	 5	

Figure 2: MISTIC computer, constructed in 19571	

My initial duties in the Computer Lab were programming
assignments for MISTIC, the sole computer at the Computer
Lab for several years after my arrival. But in the early 1960s
the Lab was anticipating retiring MISTIC through the
acquisition of commercial computers from the Control Data
Corporation (CDC). The first arrival was the CDC 160A, a
small (for the day) desk-size computer, followed a year or so
later by the CDC 3600, a powerful mainframe computer.
These machines had architectures that contrasted sharply
with that of the IBM 650 and MISTIC. The CDC 160A and
3600 were “modern” computers with index registers,

																																																								
1 Photo courtesy of Michigan State University Archives

	 6	

asynchronous I/O, interrupt driven processing, magnetic tape
and high-speed peripherals. The assembly language of each
of these machines bore the mark of its architectural character.

My programming work during this period was largely on
systems programming tasks. In fact, the 160A and 3600
could be cabled together to form an early commercial multi-
processor system, and one of my later programming projects
employed that configuration. Several long-term users of the
Computer Lab had substantial investment in software for
MISTIC and were deeply concerned about its impending
retirement. To dispel these concerns I was assigned to
construct a simulator for MISTIC on the new computer(s). The
simulator was written (in assembly language) for the CDC
3600, but the 3600 did not have a paper tape reader, and as
a primary input device of MISTIC, paper tape reader
operation was embedded in much of its software. However,
the CDC 160A did have a paper tape reader, so the coupled
computers were used to program a simulator that provided
unimpaired execution of any running MISTIC program. This
provided early (about 1962-63) experience with multi-
processor programming.

The extensive hands-on experience with the MISTIC
computer was a real touchstone. As a copy of the ILLIAC I
computer constructed at the University of Illinois in 1952
[119], MISTIC shared the heritage of being directly based on
the historic computer architecture devised by John von
Neumann and others in 1945 [136]. Having only the most
basic facilities of a von Neumann computer, programming on
MISTIC routinely required techniques of program self-
modification. A number of alternative features to replace that
need were already included in the computers replacing it.
Computer architecture advances such as interrupt driven
facilities, asynchronous input-output, and various addressing

	 7	

modes would lead to rapid evolution of programming
techniques. Even back then, the MISTIC experience felt like
an encounter with computing history.

	 8	

Chapter I I
A History of Automaton Automorphisms

The Excitement of New Ideas

In addition to my programming responsibilities in the
Computer Lab at MSU, I immediately joined an on-going
reading group of research assistants led by Professor Weeg.
This group read and met regularly to discuss theoretical work
in computing. We studied the historic work on Turing
computability using the book by Martin Davis [29] as the
source. But much emphasis was given to the finite state
machine model that came to the forefront in the mid-1950s.
We studied papers such as Mealy [106], Moore [107],
Ginsberg [63], and Rabin & Scott [116] as well as others that
began to appear. This model was developed to aid in the
design of complex circuits following primary contributions by
Huffman [79] and Kleene [91]. Inspiration for this formal
model can be traced back to Shannon’s work on relay circuits
in 1938 [123], and McCulloch & Pitts’s work on nerve-nets in
1943 [105]. But the papers published in the mid-1950s
established the finite state model as it has come to be known.
This background provided me with crucial early preparation
and direction for eventual thesis research. However, it would
remain unclear for some time how, or if, these topics might
relate to a dissertation in traditional mathematics (the
Computer Science Department at Michigan State University
did not commence operation until 1969).

In 1960 Professor Weeg guided me in the initiation of
research activities and asked about my preferences. After a
bit of consideration, I was motivated by studies in topology
where ideas of structure preserving (e.g., continuous)
transformations are captured in a very general, abstract and
axiomatic way. So I suggested using an analogous

	 9	

approach to investigate transformations on automata (e.g.,
reduction to a minimal state machine), although I had some
doubt this suggestion would be well received. Earlier
Professor Weeg had worked on algorithms for floating point
arithmetic for the UNIVAC 1103 at Remington Rand, and at
this time he was deeply involved in research and writing for
a book on numerical analysis [142]. So it was unclear to me
if he would welcome my striking off in a new and
unestablished direction. But I was pleased (and relieved)
that Professor Weeg gave his approval. A disadvantage of
this research direction was that there was no preceding
work at all to offer guidance on this topic. But this also
allowed me to dispense with the usual first research step of
learning what had already been done. Almost at once we
would be in the midst of the creation of an entirely new area
of automata research.

Our arrangement was that I would meet with Professor
Weeg once a week to discuss with him whatever research
progress I had made. The topological analogy that I chose
for automata was to use submachines as the open sets.
This did lead to a continuous function concept with
desirable properties for the preservation of numerous
automaton structures of interest. However, in most cases
the topology was uninteresting, and in cases of the most
interest (strongly connected automata), the topology was
trivial. So while it did provide initial results of interest, this
avenue of research was soon exhausted. But making
original discoveries was exciting, and seeking to continue to
pursue investigations of automaton transformations led me
to consider following analogies with ideas in algebra.

The automaton transformation functions I next considered
were inspired by the homomorphism concept from algebra,
and for automata transformations I dubbed them “operation

	 10	

preserving”. The operation to be preserved is the state
transition function that embodies the structure of an
automaton. So this might alternatively be called a transition
preserving transformation. The term I used appeared in a
number of early published papers. Because of a clear
analogy with mappings in algebra, as work progressed the
term homomorphism would sometimes replace it. These
transformations have strong structure preserving properties.
The idea is perhaps most simply communicated with a
diagram. In Figure 3, we focus on a single transition
between two states in an automaton A, and the condition
that is required of an operation preserving function h in the
image automaton B, where h: A → B.

Figure 3: operation preserving function

In Figure 3, target states h(s) and h(t) in automaton B are
required to enjoy exactly corresponding transitions to each
of those in their source states s and t in automaton A. This
is often referred to as a “commuting diagram” as when you
follow h and then x in B you always arrive at the same state
as when you follow x in A and then h. Basic details of the
definitions will be more fully described in the next section.

My weekly meetings with Professor Weeg continued as I
pursued this new direction. But there soon was a change in
our interaction. In addition to me reporting my new results,
Professor Weeg began informing me of new results he was

	 11	

obtaining on this topic. This was quite an unexpected turn of
events to me because of his focused activity in numerical
analysis as noted earlier. Of course, he had been leading
our research seminar on automata theory, so a primary
interest there was clear. But he had not previously
published in this area. Only later did I gain a fuller
appreciation when I learned that Professor Weeg’s doctoral
dissertation was in algebra. At any rate, the nature of our
interactions shifted to a mutual exchange from that point on.

With Professor Weeg’s guidance I completed research for a
dissertation to submit to the Mathematics Department just
as he took a sabbatical leave (for the 1963-64 academic
year to Iowa State University where he had done his Ph.D.).
I had finished writing my thesis before his departure, but a
copy did not get finalized and sent to my committee until the
start of that academic year. There ensued a long delay with
no reaction and no setting of a defense date. Professor
Weeg’s absence complicated communication both with me
and evidently with my committee members. Eventually the
defense delay extended through the entire academic year.
Only after my defense did I learn that this was due to one
committee member, Dr. John Hocking. Dr. Hocking was a
topologist, and as I indicated earlier, the level of topological
ideas in my initial approach to investigating automata
mappings was superficial. Apparently this (and I surmise
perhaps the non-traditional mathematical topic of my work)
left him reluctant to accept the thesis. This was ironic as my
inspiration for this perspective on automata transformations
took root from a topology course I took from Dr. Hocking.

Despite the lack of depth of topological ideas in my initial
work, the automata mapping results arising from the
topological perspective were significant and original from
the automata point of view. And in any case this was a

	 12	

small minority of the thesis with the vast majority of work
pursuing the algebraic line that was my primary focus. It
appeared that there might also have been political issues.
Professor Weeg was only part-time in the Mathematics
department, had his primary office at the Computer Lab,
and had research interests primarily related to his Computer
Lab activity. In addition, as I found out considerably later,
Professor Weeg had determined by early that spring that he
would not return to MSU after completing his sabbatical as
normally required, and there was a dispute over the
repayment of the partial financial support he received from
MSU during his sabbatical. At any rate, late in the spring
quarter a date was finally set for my defense. I found out
after my defense that Dr. Hocking had agreed to accept the
judgment of an unbiased, external scholar. This was
Seymour Ginsburg who Dr. Hocking knew from their days
together in the graduate mathematics program at the
University of Michigan. Ginsburg had a well-established
reputation as an automata theory scholar by this time (a
reference to some of his work was included at the beginning
of this chapter), and subsequently enjoyed a long and
distinguished career in computer science. Happily,
Ginsburg’s opinion of my dissertation was reportedly
completely positive, and my thesis defense itself was
routine.

The remainder of this chapter will set forth the origin of the
automaton automorphism topic in some detail, including a
selection of early results. Since proofs of all the results
already appear in the literature, they are omitted, except
when those ideas are crucial to explaining the direction of
the research.

	 13	

Basic Definitions
I first present the model adopted for our research. Although
there has been little or no real change in the concept over
the years, the notation to be used has evolved. Only a
selected bibliography is provided in the following, but the
book by Bavel [14] includes substantial bibliographic
coverage of the topic.

Definition 1 [36, 38]: an automaton A is a triple, A = (S, I,
M), where S is a finite set (the states), I is a non-empty
semigroup (the collection of inputs), and M: S × I → S is a
function (the state transition function). We assume the
“sequential machine” condition that M(M(s, x), y) = M(s, xy)
for all x,y∈I and s∈S (the juxtaposition xy denotes the
application of the semigroup operation to elements x and y).

Several remarks are relevant to this definition. First of all,
the symbols used to denote the set of states, the inputs,
and the transition function are arbitrary and can be chosen
to suit personal taste. The popular convention for the choice
of symbols has varied over the history of the topic, in part
guided by the evolution of commonly available typography.
It is written here as in the first published papers on
automaton automorphisms, and this continuity will be
followed throughout. Definition 1 (mostly) followed the
notation adopted by Rabin and Scott [116]. However, this is
both a departure from, and a generalization of, the definition
adopted by most authors at this time, including Rabin and
Scott. The assumption that the state set S is finite is non-
essential for many results and was not included in our early
work. But it is assumed by numerous other authors to be
cited and so is adopted for consistency (and, of course,
inspired by the concept of the “finite state model”).

	 14	

Definition 1 is a departure from most other work at this time
by the omission of both outputs of a transducer and final
states of a recognizer. Some authors subsequently referred
to this model as a semi-automaton, or quasi-automaton,
acknowledging that something is missing from an
“automaton”. Other authors have preferred the term
transition system, perhaps the most fitting choice. But as
others have suggested, the term “automaton” is quite
pliable, and it is the term we (and many others) have used
so it will be continued here. This model is concerned only
with state change in response to input, and that is a central
point as this research intends to focus on aspects of the
internal structure of the state change of automata.

The generalization aspect of Definition 1 is allowing an
arbitrary semigroup to serve as inputs. The semigroup
aspect is an abstraction allowing a wide variety of “input
elements”, and only requires of them a binary operation that
is associative. Ginsberg [64] first introduced this
generalization. Most authors at that time (and many now)
assumed instead that the inputs consist of all finite
sequences, written Σ*, where Σ is a finite alphabet of
symbols (similarly for outputs with their own alphabet when
they are included). But that case is subsumed in Definition 1
as Σ* is a semigroup (monoid in fact) under the
concatenation of sequences, and the flexibility gained (e.g.,
modeling gesture input) by the generalization in Definition 1
rarely adds complication.

Definition 2 [36, 38]: Given two automata Ai = (Si, I, Mi), i =
1, 2, a function h: A1 → A2 is understood to be a function
from S1 into S2; the function h is said to be operation
preserving if h(M1(s, x)) = M2(h(s), x) for all s∈S1 and x∈I.

	 15	

The operation preserving property is the formalization of the
condition depicted in Figure 3 (commuting of the
applications of function h with applications of inputs). If the
function h is also one-to-one and onto, it is called an
isomorphism; when A1 = A2, the function is called an
endomorphism, and if also an isomorphism, it is then
referred to as an automorphism.

Other authors who study this type of transformation
sometimes allow the two automata to have different inputs
and include a mapping between the inputs as well. We have
discarded that generalization since the focus is on the
structure of transformations within a single automaton.

The first writings to appear on automaton automorphisms
were individual technical reports by Professor Weeg and
myself [137, 36] in May of 1961. During this timeframe, the
Computer Lab at MSU and many computing research
organizations produced a technical report series, and they
were quite widely exchanged between institutions. So while
not a “published” source, citations to these technical reports
appeared in a number of early publications on the topic.
The first “external” presentation of the ideas was my talk at
the summer meeting of the American Mathematical Society
in August of 1961 [37]. The first publications were separate
journal articles by Professor Weeg and myself [138, 38] and
a conference paper by Professor Weeg [139], all in 1962
(although the conference paper did not appear in print until
1963). Also, my dissertation [39] was eventually accepted
by the Mathematics Department in 1964. I next will highlight
the major results in these sources.

	 16	

Initial Results
One algebraic structure naturally associated with an
automaton, the characteristic semigroup, derives from the
interplay between input semigroup characteristics and the
automaton structure.

Definition 3 [36, 38]: inputs x,y∈I of an automaton A = (S, I,
M) are equivalent (with respect to A), x ≡ y, provided that
M(s, x) = M(s, y) for all s∈S.

The equivalence classes from this relation partition the
inputs I into disjoint sets that are written as [x] = {y∈I ⏐ x ≡
y}. These classes themselves form the characteristic
semigroup, S(A), under the natural (and unambiguous)
operation [x]•[y] = [xy], and we normally just write this
operation as the juxtaposition [x][y]. S(A) is often referred to
as a quotient of I by ≡ and written as S(A) = I/≡. The natural
correspondence h: I → S(A) given by h(x) = [x] is a
semigroup homomorphism.

For automaton A = (S, I, M), each input x∈I defines a state
function Mx: S→S, which we write here with postfix notation,
by (s)Mx = M(s, x). Of course, another input y∈I may define
the same function, Mx = My as functions. But this is true if
and only if x and y are equivalent (x ≡ y), so Mx is just
another name for the equivalence class [x]. And ((s)Mx)My =
(s)Mxy, so the (finite) collection {Mx ⏐ x∈I} is a functional
representation isomorphic to the characteristic semigroup
S(A).

A large variety of properties of the internal structure of
automata have potential interest, but we will confine this
presentation to (effectively) four as we proceed.

	 17	

Definition 4 [115]: an automaton A = (S, I, M) is cyclic if
there exists a state s0∈S so that for each s∈S there exists
x∈I with M(s0, x) = s; the state s0 is called a generator;
automaton A is strongly connected if every state is a
generator (so that transitions exist between each pair of
states).

Although implicit in work such as Rabin and Scott’s [116],
the idea of a cyclic automaton was first explicitly identified
by Oehmke and was named for an analogy from algebra.
But this analogy has a significant flaw that will be revealed
shortly. Oehmke introduced the cyclic idea a little after the
time period under discussion in this section. Later on Bavel
introduced [12] the name singly generated automata to
replace the cyclic automata terminology, and I find this a
much better choice for the reason to be indicated shortly.
However, it is most succinct and natural to include this
concept at this point, in conjunction with its global
counterpart, strongly connected automata (the idea of
immediate historical relevance). Strongly connected
automata were introduced much earlier by Moore [107] in
his study of the input-output distinguishability of states in
transducers.

It is readily verified that if an operation preserving function
maps a singly generated or strongly connected automaton
onto another automaton, then the image automaton is also,
respectively, singly generated or strongly connected.

Groups are a thoroughly studied class of algebraic systems
and one of the earliest of my observations prompted
anticipation that some of this understanding may lead to
insight into automaton structure.

	 18	

Theorem 1 [36, 38]: the collection of automorphisms of an
automaton A forms a group. The symbolism chosen for this
automorphism group was G(A).

By similar analysis, but lacking inverses, there is an
endomorphism semigroup, denoted by E(A), formed by
that collection. We will explore numerous relationships
between S(A), G(A), E(A), and the structure of A. This
commences with an early result that was a seemingly small
observation but with substantial consequences.

Theorem 2 [36, 38]: given two automata Ai = (Si, I, Mi), i = 1,
2, an operation preserving function h: A1 → A2, and a
generator state s0 of A1, h is completely determined by its
value for h(s0).

Theorem 2 follows since for any state s∈S1 there is x∈I with
M1(s0, x) = s, but then h(s) = h(M1(s0, x)) = M2(h(s0), x). Of
course, we don’t expect an arbitrary choice of h(s0) to
necessarily be consistent with an operation preserving
function (e.g., since generator states must map to
generators), so valid options require verification. But for
operation preserving functions, an important corollary in the
case of strongly connected automata is that two different
operation preserving functions h1 and h2 (h1 ≠ h2) must
produce different results for every state argument (i.e., if
there exists a state s with h1(s) = h2(s), then h1 = h2).

This unique determination of an entire function from its
action on a single argument greatly simplifies the discovery
of operation preserving functions. In particular, we can
conclude [36, 38] that the size of the group G(A) cannot
exceed the number of states in A if A is singly generated –
briefly stated #G(A) ≤ #SA (we are using #X to denote the
cardinality of set X). However, while this proof was given in

	 19	

the first publications, this result was only asserted for
strongly connected automata as the singly generated
concept had not yet been proposed (in fact, the same proof
also establishes that #E(A) ≤ #SA for singly generated A).

Professor Weeg had discovered that the automorphisms of
strongly connected automata have rather special properties.
An automorphism acts as a permutation of states. A
regular permutation (on a finite set) is one that is the
product of disjoint cycles all of the same length.

Theorem 3 [137, 139]: if A = (S, I, M) is a strongly
connected automaton, then G(A) is a group of regular
permutations, furthermore each group of regular
permutations occurs as G(A) for such an automaton.

Then from known properties of regular permutations:
Corollary [137, 139]: the order of G(A), #G(A), is an integral
divisor of #S.

This provides a definitive structure for automorphisms and
improves the earlier result that #G(A) ≤ #S. Professor Weeg
[139] also provided an algorithm to determine G(A), and
conversely a constructive method to develop a strongly
connected automaton A for which G(A) is a given group of
regular permutations.

Professor Weeg explored a sense in which the structure of
G(A) is reflected by the behavior of classes of inputs.

Definition 5 [137, 138]: for automaton A = (S, I, M) and s∈S,
inputs x,y∈I are in agreement (with respect to s), x ~s y, if
and only if M(s, x) = M(s, y). This is an equivalence relation
that partitions inputs into classes written [x]s = {y | x ~s y}.

	 20	

Also, for each pair of states s,t∈S there is a set of
associated transition inputs Ist = {x∈I | M(s, x) = t}.

Each agreement equivalence class may merge several of
the equivalence classes of the characteristic semigroup.
Since the agreement classes depend only on a single state
they are more readily determined than equivalence classes.
Weeg considers a partition of each agreement class [x]s as
a union of transition sets, [x]s = Ist ∪ Isu ∪ … , where the
union extends over the transition sets Ist for each t∈S.
Furthermore, the transition sets Ist and Isu are disjoint when
t ≠ u, and all are non-empty if A is strongly connected.

Finally, Weeg defines an operation (*) on the transition sets
by Ist * Isu = Isv provided that M(s, xy) = v for all x∈Ist and
y∈Isu and he obtains a result connecting automorphisms to
this transition set operation.

Theorem 4 [138]: if A = (S, I, M) is a strongly connected
automaton and G’(A) is a subgroup of G(A), then for each
s∈S there is a collection of transition sets contained in [x]s
which under the * operation is a group isomorphic to G’(A).

We next take up a structure property arising from an
observation about the relation between endomorphisms and
state transition behavior. Suppose there is an input x∈I and
an endomorphism h that “track” one another, i.e., M(s, x) =
h(s) for all s∈S (or Mx = h). Then since h commutes with all
state transitions, the same must be true of transitions by x.
That is, for all y∈I and all s∈S, M(s, xy) = M(M(s, x), y) =
M(h(s), y) = h(M(s, y)) = M(M(s, y), x) = M(s, yx). Whether
an input and endomorphism exist that enjoy this relationship
is in question, and this leads to the following idea.

	 21	

Definition 6 [36, 38]: an automaton A = (S, I, M) is abelian
provided M(s, xy) = M(s, yx) for all s∈S and x,y∈I; if A is
abelian and strongly connected, it is called perfect.

Here is where we encounter the flaw in the choice of using
the algebra analogy in Oehmke’s selection of the name
cyclic automaton. In algebra, a cyclic group (or semigroup)
is necessarily an abelian group (resp. semigroup).
However, for automata, the cyclic property does not imply
the abelian property (it is easy to provide even a two state
counter-example). Hence I find it apposite to avoid that
potentially misleading ‘cyclic’ term and use ‘singly
generated’ automata instead.

Any automaton with an abelian input semigroup is abelian,
but abelian automata may readily occur with an arbitrary
input semigroup. We also note in passing that the abelian
property of automata is also invariant under operation
preserving functions.

In algebra, the abelian case of systems commonly has a
simpler analysis than the general case. As we will see, the
same circumstance obtains for automata. For an abelian
automaton, each function Mx is operation preserving since
its application commutes with every input. That is, every
input defines an endomorphism. Further exploration in this
direction leads to the next result.

Theorem 5 [36, 38]: If A = (S, I, M) is a perfect automaton,
then G(A) is an abelian group, and for each automorphism
α, α = Mx for some x∈I.

This result characterizes automorphisms in terms of input
behavior and that leads to even further conclusions for
perfect automata.

	 22	

Theorem 6 [38]: If A = (S, I, M) is a perfect automaton, then
#G(A) = #S and G(A) = S(A) (i.e., every endomorphism is
an automorphism and their number is the same as the state
count).

Professor Weeg also proved [138] the converse of Theorem
6 – i.e., if A is strongly connected, then A is abelian if and
only if G(A) is abelian and #G(A) = #S.

To conclude this line of investigation we introduce our last
structure concept of interest.

Definition 7 [116]: Given automata Ai = (Si, I, Mi), i = 1, 2,
their direct product is A1×A2 = (S1×S2, I, M1×M2), where
M1×M2((s1,s2), y) = (M1(s1,y), M2(s2, y)), for all y∈I, s1∈S1,
and s2∈S2.

The direct product was introduced by Rabin and Scott as a
means to construct a recognizer for the intersection of
regular languages from their individual recognizers.
Actually, it provides even more since the one direct product
automaton can recognize not just the intersection, but also
each of the two individual languages, their compliments,
and their union, just by choice of a set of final states. But
this only scratches the surface of this idea. The direct
product provides a basis for the study of the decomposition
of automata into smaller and/or simpler components. It is
with that perspective that we conclude this section.

Theorem 7 [38]: if A is a perfect automaton, then A is a
direct product of automata if and only if G(A) is a direct
product of groups.

	 23	

Since factor automata must again be perfect, Theorem 7
can be applied repeatedly. From group theory it is known
that an abelian group is a direct product of cyclic groups of
prime power order, so we conclude that perfect automata
must decompose into exactly such components (i.e., each
input acts as a cyclic transition of prime power order that is
a factor of the original state set size). Hence in this tightly
restricted class of perfect automata, we see a precursor to
the fully general decomposition theory subsequently
developed by Krohn and Rhodes [95, 96].

We note in passing that chapter 5 of Gécseg & Peák [61]
provides a redevelopment incorporating some of the results
summarized in this section and the next, includes additions
of their own, and provides a bibliography that includes
Russian and eastern European work not reported on in this
document.

Ensuing Developments
Interest in the automaton automorphism topic spread quite
rapidly. First locally, Robert Oehmke, a colleague of
Professor Weeg in Mathematics, became interested in the
area and published an early paper [115] that has already
been cited. Also within the first year, two more of Professor
Weeg’s doctoral students began work in the area. This was
Ralph Brown and Bruce Barnes, and before long they
published results [19, 11]. This together with additional
papers by Professor Weeg and myself [140, 141, 40, 41]
provided a critical mass of research that attracted a national
and international collection of researchers to the area. The
sense of the ensuing follow-on effort is presented here by
discussing a selection of recurrent threads in the work.

	 24	

Our first thread encompasses transition analysis and the
characteristic semigroup. Weeg [140] refined his earlier
work on agreement classes for strongly connected
automata by exhibiting a homomorphism from a subset of
the inputs I to G(A). Brown [19] and Barnes [11] continued
the earlier investigation by Weeg [138]. Brown showed that
Weeg’s basic results for strongly connected automata also
hold for singly generated automata (although he used that
condition without naming it) as long as consideration is
restricted to agreement classes [x]s where s is a generator.

Barnes [11] continued the work from [138] by showing that
for a strongly connected automaton, if the complete
collection of transition sets of [x]s for a state forms a group,
then G(A) is isomorphic to that group. He also established
an interesting relationship between subgroups of an
automorphism group and subautomata (where an
automaton (S’, I’, M’) is a subautomaton of (S, I, M) if S’ ⊆
S, I’ is a subsemigroup of I, and M’ is M restricted to S’× I’).

Theorem 8 [11]: for each strongly connected automaton A
and subgroup G’(A) of G(A) there is a strongly connected
subautomaton A’ whose automorphism group G(A’) is
isomorphic to G’(A).

Later Uemura [134] used semigroup methods to show
conditions for G(A) to be (isomorphically) embedded in
S(A), and Masunaga, Noguchi and Oizume [103] presented
an incisive unification of numerous variants of automata
structures that are expressed by corresponding algebraic
properties of the characteristic semigroup (such as singly
generated abelian automata by abelian monoids, and
strongly connected state independent automata (see below)
by right groups).

	 25	

A second thread of interest relates to finding less restrictive
classes of automata than perfect automata that still exhibit a
compelling relation between algebraic and automata
structure. One of the ideas that drew significant attention
was the group-type automata of Trauth [130] which
replaced the abelian condition. His approach also unified
and clarified the earlier work of Weeg, Brown, and Barnes
[138, 19, 11].

Definition 8 [130]: an automaton A = (S, I, M) is state
independent provided that for all s∈S, x ~s y if and only if x
≡ y. That is, each agreement class [x]s of Weeg is exactly
one of the equivalence classes of the characteristic
semigroup.

Definition 9 [130]: an automaton A is called group-type if A
is state independent and the characteristic semigroup S(A)
is a group; if A is group-type and strongly connected, it is
called quasi-perfect.

Trauth provides results showing that the quasi-perfect
automata are a useful generalization of perfect automata. In
several ways this is an optimal choice to replace the abelian
property. For one, A is perfect if and only if A is quasi-
perfect and G(A) is an abelian group. A group-type
automaton need not be strongly connected. But if it is singly
generated, then in fact it is strongly connected (i.e., quasi-
perfect). Also, if A is strongly connected and #G(A) = #S,
then A is quasi-perfect.

Moreover, quasi-perfect automata have other similar
properties to the perfect case. For instance, for a quasi-
perfect A, S(A) is isomorphic to G(A). Also, while not all
state functions Mx (for x∈I) are automorphisms (as in the
perfect case), for quasi-perfect automata A, x is in the

	 26	

center (i.e., M(s, xy) = M(s, yx) for all s∈S and y∈I) if and
only if Mx∈G(A). An analogy for the result on direct products
of perfect automata was also obtained but was not as
persuasive. Trauth’s ideas led to an extended variety of
other investigations (e.g., [84, 71]).

Another thread in the research was identifying less
restrictive alternatives for the strongly connected property
that was so frequently assumed for early automorphism
results. The most useful and widely studied such property
was the idea of singly generated (or cyclic) automata
initiated by Oehmke [115]. Oehmke’s paper was largely
concerned with right-congruences on automata (a topic we
do not explore here), but his analysis does lead to the
conclusion that if A is singly generated and state
independent (and hence strongly connected), then G(A) is
isomorphic to a subgroup of S(A).

We have earlier noted that a number of early results that
were stated for strongly connected automata stand
essentially without change for singly generated automata,
and that for state independent automata, the singly
generated and strongly connected automata are
synonymous.

Bavel not only introduced the alternative term singly
generated [12] instead of cyclic, but developed an insightful
analysis of homomorphisms using automata structure. For
singly generated automata he generalized Weeg’s result for
strongly connected automata that #G(A) is an integral
divisor of #SA by showing that #G(A) is an integral divisor of
the number of generator states. In fact, when I is a free
semigroup, he even improves on that [13].

	 27	

In a succinct unification, Arbib [3] redeveloped many known
automorphism results for the case of singly generated
automata, following a variant of the ideas of Oehmke [115].
Recently Tian, Zhao and Shao [128] provided an extensive
analysis of the structure and representation of singly
generated automata.

The last research thread that we examine in this section
concerns the direct product structure of automata. In
addition to the early results on direct product of perfect
automata, direct product decomposition of strongly
connected automata with #G(A) = #S (i.e., the group-type
idea that was subsequently named by Trauth) was shown in
[40] to be synonymous with a group product decomposition
of G(A). Also, Weeg [141] gave a sufficient condition for the
direct product of strongly connected automata that G(A1 x
A2) is isomorphic to G(A1) x G(A2). More generally, G(A1) x
G(A2) is a subgroup of G(A1 x A2).

A uniformly structured decomposition of automata was
developed by refining the methods of Hartmanis and
Stearns [74], first by Jump [89] using automorphisms and
then by Tiuryn [129] using endomorphisms. Masunaga,
Noguchi, and Oizumi [103] also provide several significant
results on direct product decomposition using both G(A)
and S(A), including also noticing that the decomposition of
strongly connected, state independent automata is
characterized by decomposition of G(A).

The strongly connected property was problematic for direct
product analysis. It’s immediate to see that if a direct
product automaton is strongly connected, then the two
factor automata must also be strongly connected. However,
the seemingly natural converse is not true. In fact, [41]
showed that if the two factor automata are even “similar” in

	 28	

the sense of one being the image of the other by an
operation preserving function, then their direct product
cannot be strongly connected. So in addition to each being
strongly connected, a relationship called “strongly related” is
required of two factors for their direct product to be strongly
connected, and [41] also provided a necessary and
sufficient condition for this.

Final Remarks on Automorphisms
The automaton automorphism concept is a means to
formalize and quantify symmetries that occur in this model.
It provides an analysis orientation that fosters insights into
connectivity properties. This chapter provides only limited
coverage of the entire body of work that followed from the
earliest automata automorphism research. Presentation of
the full scope of that work exceeds the objective of this
historical account.

While a couple of hundred papers (and several books)
related to the topic have been published, interest in
automata automorphisms became widely scattered by the
mid-1980s. My own attention was already shifting in another
direction by the mid-1960s, and my alternative pursuits are
described in detail in the next chapter. Although significant
interest in classic automata theory (including
automorphisms) has subsided, use of automorphisms is re-
emerging in a variety of computer science topic areas such
as: fuzzy automata [122], cellular automata [23], application
of formal methods [149], database [57], error correcting
codes [62], and theory of computation [15]. Investigations
utilizing automorphisms in their analysis have established
their value with unique and valuable insights, and continue
to foster contributions in a variety of contexts.

	 29	

Although my research efforts shifted away from this area
quite soon, I continued an interest in automata and formal
languages throughout my career. I later published a couple
of papers on formal languages and hybrid grammars [43,
45], one on semigroups and automata [44], and another on
regular languages [55]. Also, several Ph.D. students whom I
supervised wrote dissertations on topics in automata and
formal languages. Finally, I frequently taught courses in this
topic area, and eventually transformed a large collection of
class notes into a published text [53].

	 30	

Chapter I I I
Programming Languages Thru the Years2

 Linguistic Structure for Computer Programs
By the mid-1950s there were a number of efforts at creating
programming languages that facilitate the development of
computer programs. Several came to my attention through
my programming responsibilities at the MSU Computer Lab,
and FORTRAN was the most successful. FORTRAN
originated in 1954 with an IBM team led by John Backus. A
compiler first became available for the IBM 704 in 1957.
FORTRAN adopted the level of abstraction of familiar
mathematical expressions rather than machine instructions. It
relieved the programmer of so much tedious detail, and so
greatly increased programmer productivity that its use in
many applications was compelling. This advantage soon
forced other computer companies to develop Fortran software
for their own computers. However, compiler construction was
ad hoc and not well understood, and programmers with any
related experience were in extremely short supply. So
FORTRAN did not become broadly adopted or available on
other manufacturer’s machines until into the early 1960s. In
my case I had occasion to read about the language, and to
examine FORTRAN programs, but active use was not
immediately possible. Since the MSU Computer Lab operated
CDC computers, it was the early 1960s before I had access
to an implementation. During the intervening period the
language had evolved through three versions (see Backus
[6]).

																																																								
2 An earlier version of this chapter appeared in Turing
Tales by E. G. Daylight, Lonely Scholar bvba, 2016.

	 31	

Issues about how to provide machine independent
descriptions of programming languages attracted my interest
right from the beginning. FORTRAN was initially described in
a careful but informal way [82], typically in the context of
examples. For instance, a list of six “Formal Rules for
Forming Expressions” was given, and in Figure 4 you see rule
number 6 from that list.

6. If E and F are expressions, and F is not floating point
unless E is too, and the first character of F is not + or -
, and neither E nor F is of the form A**B, then

 E**F
 is an expression of the same mode as E. Thus
A**(B**C) is an expression, but I**(B**C) and A**B**C
are not. The symbol ** denotes exponentiation; i.e.
A**B means AB.

Figure 4: FORTRAN syntax rule for exponentiation

One consequence of this informal description was that the
most convincing argument one could make for or against the
legitimacy of a FORTRAN program containing an uncertain
construct was whether or not it worked in “the” compiler. But
whose compiler – numerous computer manufacturers were
providing a “FORTRAN” compiler, and they varied
significantly in what was admissible, and in how an
admissible program worked. Although FORTRAN’s position
was dominant in those days, this problem seriously troubled
its use as it spread from IBM to industry-wide acceptance.
This difficulty could make portability of a FORTRAN program
between different manufacturers computers as troublesome
as writing the program from scratch all over again. This
situation persisted until 1966 when the first standard [135]
was established (but significant compatibility difficulties still
lingered on).

	 32	

I completed my Ph.D. in 1964, and at this time Dr. Von
Tersch was both Director of the Computer Lab and Head of
the Electrical and Computer Engineering Department at
Michigan State. At this pivotal juncture for me, Dr. Von Tersch
offered me a position in the Electrical and Computer
Engineering Department with the title of Assistant Professor
of Computer Science. This title was a bit remarkable in that a
Computer Science department would not officially exist at
MSU until four years later (and in the College of Engineering),
but I did appreciate that gesture. In my first academic
appointment I taught a yearlong advanced undergraduate
computer programming course of my own design. And the
position included a half-time appointment in the Computer
Lab as head of systems programming. This enabled me to
continue the software development activity that I had enjoyed
and valued while experiencing the stimulating activities that
are inherent in an academic position.

On a related note of historical interest, Dr. Von Tersch’s roots
had been in Iowa, academically at Iowa State University.
Later in 1968 Dr. Von Tersch became Dean of the College of
Engineering at Michigan State, a position he held for more
than twenty years. He was also instrumental in the
establishment of the Computer Science Department at MSU.
He died in 2010 at the age of 87.

During that first year of teaching at MSU I learned my next
two programming languages. One of these languages was
ALGOL 60. ALGOL 60 [109] was developed by an
international committee with the purpose of creating an
international algebraic language “to describe computational
processes”, while remaining “as close as possible to standard
mathematical notation”. The committee members drew on
experience with existing problem-oriented languages as a
basis, but they also introduced new ideas with ALGOL 60.

	 33	

The overarching idea of “block structure” was one innovation.
In addition to providing the organizational basis for
subroutines, it allowed for nesting of program elements with
scoping rules that provided for localization of identifiers at any
point in a program. For procedures/functions two distinct
means of transmitting arguments (by name or value) provided
enhanced generality. Also, there were multi-assignment,
dynamic for-statements, dynamic arrays with generalized
indexing, etc. Finally, there was one other important feature
missing in FORTRAN that was provided and fostered in
ALGOL 60 – recursion, and this inclusion was instrumental in
bringing recursion into the mainstream (how this came to be
is an interesting story, see Daylight [30]). Following its
success in ALGOL 60, recursion became a feature of nearly
every programming language to follow (even, eventually,
FORTRAN). The collection of features in ALGOL 60 provided
new challenges for compiler writers and fostered significant
research into techniques needed to accommodate them (e.g.,
[118]). The collection of features, their generality, and their
interactions introduced various subtleties that led to the need
for a clarifying revision of the defining report [110] three years
later, and this is a point that will arise again later.

A crucial part of the process of describing this new
programming language was to incorporate a notation to
precisely detail what was admissible in the language, and do
so in a manner completely independent of any specific
compiler or computer. The conceptual idea for the notation
was due to John Backus [5], although almost simultaneously
there were several closely similar but apparently independent
developments that I’ll return to later. This notation came to be
known as BNF, an acronym for Backus Normal Form, or
sometimes alternatively Backus-Naur Form to credit the editor
of the ALGOL 60 Report, Peter Naur. Although devised by
John Backus, it was Peter Naur who championed its use

	 34	

[111] in the defining report and coalesced the description of
ALGOL 60 around BNF. As one small indication of the
change that the use of BNF brought to the description of
syntax, consider the clarity of the sole compact ALGOL 60
BNF rule (from the revised report [110] actually) to express
exponentiation in an expression (using ↑ for the operation):
<factor> ::= <primary> | <factor>↑<primary>. And compare
that with the earlier example of FORTRAN’s syntax rule
(Figure 3). The use of BNF for the language description made
it not only eminently more clear and succinct but at the same
time provided greater generality. John Backus received the
ACM Turing award in 1977 for his work on FORTRAN and
BNF, and Peter Naur received the ACM Turing award in 2005
for his work on ALGOL 60.

ALGOL 60 was an influential programming language for
several reasons. It incorporated programming language
features that stimulated years of study and discussion (e.g.,
[92, 18, 102, 46]) that promoted advances in the area.
Through its reliance on BNF, another aspect of ALGOL 60
was the utter clarity of its syntax and its avoidance of quirks
and special cases. By this one example, BNF was instantly
established as the means to describe programming language
syntax. BNF is classified as a metalanguage – a language
used to describe other languages. So while it does not go into
a list of programming languages, BNF is a linguistic construct,
and being confident with its use proved to be indispensible to
subsequent learning of other programming languages. BNF
has been used to describe almost every language developed
after ALGOL 60, and it provides a vital tool for pursuing
foundational work on programming languages. While the
significance of ALGOL 60 for programming languages is
profound, experience has shown that BNF has had an even
greater and more long lasting impact. It is striking that at this

	 35	

early stage, for the second time John Backus played a critical
role in programming language development.

The second programming language I learned during that first
year of teaching at MSU was IPL-V. Early versions of the
language were developed at the RAND Corporation in the late
1950s. Allen Newell and a group at RAND and Carnegie
Institute of Technology developed the IPL-V version [112] (the
first public version) that was initially released in 1960 for
several IBM computers and subsequently implemented on
other manufacturer’s machines (including CDC). While
FORTRAN and ALGOL 60 were designed primarily with
numeric processing in mind, IPL-V was designed for symbolic
(non-numeric) processing. It was intended for adaptive
problem-solving tasks involving symbol manipulation such as
formal theorem proving. The heart of IPL-V was the linked-list
data structure – this was a data abstraction that encouraged
thinking at a higher level, allowed great flexibility and
generality of data organization, and provided for dynamic
space utilization. A prominent feature of IPL-V was the
inclusion of an extensive library of list manipulation operations
that facilitated symbolic computations. Linguistic
characteristics of IPL-V were primitive, and I did not use it
beyond the teaching context that first year. However, work on
IPL-V inspired much additional interest and its operations
were to be encountered many times over in subsequent
languages (see e.g., [16]). During this time period, linked-list
processing techniques developed rapidly by a variety of
sources, both practical and formal (e.g., [104]). Years later
(1975) Allen Newell was co-recipient of the ACM Turing
award, in part for work on list processing.

While there would be a germination period, my early
programming experience and particularly my programming
languages exposure during my first year as a faculty member,

	 36	

would exert a growing influence on my research activities. My
initial research interest in automata theory would evolve over
time toward formalisms that were to become vital foundations
for programming and programming languages.

Settling into an Academic Career
In 1965 I accepted an offer to join the Computer Science
Department at the University of Iowa in its inaugural year.
This was at the invitation of Professor Weeg. Professor Weeg
had left MSU before I finished my Ph.D., and joined the
University of Iowa as the Director of the Computer Center
with a joint appointment as a Professor of Mathematics. In a
remarkably short time he accomplished the formidable task of
gaining approval for a new department in a discipline that was
not yet well established! He served as the first Chair of this
department as well as the Director of the Computer Center.
The newly established department was located in the College
of Liberal Arts and had a close connection with the
Mathematics Department. My experience in the Computer
Lab at MSU led me to attach substantial importance to
continued participation in those associated aspects of
professional computing activity, and my new position included
a joint appointment in the Computer Center at the University
of Iowa. Finally, my new position also initially included a joint
appointment in the Mathematics Department, a feature that
strengthened the alignment with my academic identity at that
point. This was a perfect match with my background and
interests, and was an opportunity that enabled me to work
next to Professor Weeg on a daily basis in a multifaceted
environment.

While a variety of courses and programs could be found at
numerous institutions, for department-level academic units
with ‘Computer Science’ in their name, a list by Ralph London

	 37	

[101] shows only 10 departments existing in the U.S. by
1965, with the first starting in just 1962 (at Purdue University).
Ralph London also reports that the first Computer Science
Ph.D. at the University of Iowa was Mortesa Rahimi (in 1968),
and I note in passing that I was his thesis supervisor.

As the Computer Science Department at the University of
Iowa was formed, and throughout its early years, there was
extensive nation-wide debate over just what the definition of
this newly emerging academic discipline should be. The
appropriate curriculum was vigorously debated, and new work
that profoundly advanced the discipline was being published
constantly. New developments had unavoidably immediate
impact on the curriculum at all levels. Substantial course
revisions were needed at virtually every offering of most
courses, and the introduction of brand new courses continued
at a brisk pace. Invariably in this situation, textbooks lagged
behind the current state of knowledge, requiring
supplementation that further complicated class preparation.
While there had been several earlier curriculum proposals, in
1968 the first comprehensive proposal to achieve significant
acceptance appeared [4] and this subsequently helped to
bring a modicum of uniformity to academic endeavors (though
it certainly did not end the debates).

At the time the Computer Science Department at the
University of Iowa formed, it had no computing equipment of
its own. Both faculty research and programming classes were
served by the facilities at the Computing Center, a campus-
wide academic service unit. The Center provided a traditional
batch-oriented, large mainframe service common during this
period. Our center was an IBM shop, running an IBM 7040 at
the outset, and acquired an increasingly powerful succession
of models of the IBM 360 line beginning in 1965. Students
and faculty went to the Computing Center to keypunch their

	 38	

programs and data, and submit their card deck to an
operator. The submitted card decks were "batched" and run
by Center staff in succession. Sometime later one would
return (four hour turn-around was typical for "normal" jobs) to
retrieve the deck and a printout. Because of the high system
overhead in individual job initiation, large classes
necessitated the acquisition of "in-core" translators (e.g.,
WATFOR [124]) that would internally process a series of
small student programs as a single job rather than treating
each one as a separate job run. This provided a huge
reduction in system overhead, and together with the advance
to a multi-processing operating system, led to turn-around of
an hour or less for short student jobs. Having a department
chair that was also the Director of the Computing Center
proved to be advantageous in the competition for software
acquisition and access to the single campus-wide computer
facility.

The Computer Center at the University of Iowa proved to be a
beehive of activity. My formal position there was something
like ‘head of programming’. But I actually had little opportunity
for that activity in the early years. The responsibility as the
campus-wide computing facility implied a diversity of needs
for service and included some particularly large demands.
Beginning in 1958, Dr. James Van Allen in Physics had
radiation sensors placed on satellites that produced vast
amounts of data requiring analysis. This resulted in the
discovery of the “Van Allen radiation belt” and led to NASA
contracts to providing funding for the pressing need for
computer analysis. Also, in the Education College Everett
Lindquist had devised the ACT and other standardized
educational tests. To support the broad adoption of these
tests Lindquist led the development of the first optical mark
scanner to supersede the electrical scanners then in use.
Both the tests and the scanners were very successful and

	 39	

created another large demand for processing capacity. Also,
the Computer Center was authorized to sell computer time to
off-campus entities, both educational institutions and industry.
Area industry was quite active and included the Army’s Rock
Island Arsenal as a major user (anti-Vietnam protests and the
Defense Department source of funds eventually brought an
end this activity in the early 1970s). And with the aid of NSF
grants for high-speed communication links secured by Dr.
Weeg, the Computer Center became an active regional
center for more than a dozen area educational institutions.

From these diverse obligations for computing services, plus
rapidly increasing enrollments in programming courses and
expanding use of computing in other disciplines, the need for
computing resources continually grew at a pace that
threatened to overrun capacity (sometimes doubling in the
space of a year). Each expansion would require the purchase
of a multi-million dollar mainframe computer more expensive
than the last. The process for each such upgrade required
creation of a request for proposals based on a thorough
analysis of the evolving needs to be met, followed by
evaluation of proposals from various computer vendors for
their hardware and software configurations, sometimes
including trips to their facility. Dr. Weeg had me work closely
with him on these efforts and the political pressures to resolve
them were often far more pressing than academic matters.
Despite a variety of funding sources, expenses of this
magnitude were a major hurdle for a state university and
required a high priority with the active involvement of the
central administration to accomplish. The Vice-President for
Educational Development and Research was D. C.
Spriestersbach and he bore primary responsibility for
university oversight of the Computer Center. Dr. Weeg had a
good working relationship with Spriestersbach who
enthusiastically accepted the argument that support for

	 40	

research and educational development entailed placing a
high priority on making excellent computing resources
available, and Spriestersbach provided consistently positive
support in the vigorous debate over funding allocations to
accomplish timely upgrades.

As a related note of historical interest, Professor Weeg
unfortunately developed a brain tumor and died in 1977 at the
age of 49. In 1978 the University named the Computer Center
in his honor. Spriestersbach devotes a chapter in his
expansive recollections [125] that expresses a central
administration perspective on the development of computing
at the University of Iowa and gives total credit to Dr. Weeg for
his insight, inspiration, planning and leadership. Also Dr.
Weeg was recognized for his many wide-ranging
accomplishments by inclusion in J. A. N. Lee’s list of
“computer pioneers” for the IEEE Computer Society [97].

Programming Language Proliferation
FORTRAN, ALGOL and assembly language, plus COBOL,
dominated the programming landscape in the U.S. throughout
the 1960s. At the University of Iowa the FORTRAN language
was used in programming classes starting in the early 1960s,
and it continued to be used in the first programming course
until 1976. However, by the mid-1960s a number of other
languages had begun to appear – e.g., APL, Basic, SNOBOL,
and several variations of ALGOL. In fact, a widely referenced
“Tower of Babel” cover on the Communications of the ACM in
January 1961 listed over 70 languages in common use, and
emphatically reflected a rising concern over the language
proliferation phenomenon.

In the mid-1960s in response to this programming language
proliferation, IBM mounted an effort to unify the language

	 41	

diversity that continued to expand by developing a broad-
spectrum language that incorporated features from
FORTRAN, ALGOL, COBOL and other languages. The goal
was to provide a single language suitable for both scientific
and business applications as well as system programming. A
team composed of IBM staff members plus members of the
IBM user group SHARE carried out the initial design of the
language, and it was initially called NPL [117]. Due to a
conflict with a prior use of this name, this language was soon
renamed as PL/I.

PL/I freely adapted features from the languages indicated
above and integrated them in a coherent way. But it was
innovative in expanding with features not available in its
predecessors. It provided three classes of storage allocation
– static, automatic (stack-based), and programmer controlled
(heap-based). It also included exception handling features
and rudimentary multitasking. It included string handling,
pointers and complex numbers. Extensive defaulting
conventions were included and all of its large set of keywords
were also available as program identifiers. These features
greatly complicated the task for compiler writers. In his Turing
Award presentation [78] Hoare, who participated in the PL/I
design process, recalls his dissatisfaction with the ambition of
both the design process and its results. He speaks of
unsuccessfully urging the elimination of features viewed as
“dangerous” and expresses the judgment that PL/I was a
“technically unsound project”. The PL/I project represented an
inflection point in programming language design and evoked
the misgivings of some.

IBM developed an implementation of PL/I (released in 1966)
for its machines and the language was quite successful in
that context. As the language’s popularity spread, it began to
be adopted for teaching by a growing number of American

	 42	

universities. However, in those days both the typical mode of
computing (“batch processing”) and the size and poor
efficiency of the IBM PL/I compiler made it impractical for
large classes. This led Cornell University to develop (on IBM
computers) an efficient in-core compiler system PL/C [108]
suited for this purpose. In 1970 the beginning programming
course at the University of Iowa was expanded into a two
course sequence. The first course continued to be taught with
FORTRAN, but with the support of the PL/C system, the
second course in the sequence used PL/I. Later in 1976 the
first course of our beginning sequence also began using PL/I.

In the fall of 1969 a Conversational Programming System
(CPS [83] – an IBM “type III” unsupported program) became
available. Despite its status, CPS provided an ambitious,
high-quality interactive system implementing the PL/I
language. As an interpreter, CPS offered incremental
compilation and accepted program fragments with immediate
execution feedback. Unfortunately, resources (e.g., terminals
and processing capacity) were only sufficient to allow
Computer Science faculty early access to this system. It was
immediately obvious that this interactive paradigm would
provide an enormous advantage for program development.
Interactive access for general faculty access and class
instruction would come significantly later.

Development of implementations of PL/I by other computer
manufacturers was problematic, and by 1980 interest in the
language had declined substantially. While PL/I did not
achieve its motivating purpose (language proliferation
subsequently accelerated rather than declining), it had a
significant impact on programming language ideas, goals and
ambitions. The successful implementation of this language
encouraged subsequent language designers to elevate
linguistic matters and reduce the emphasis on efficiency

	 43	

when considering language goals. This influence has led to
noteworthy contributions to the development of programming
languages, of course, all made feasible by amazing increases
in machine capacity.

In the latter half of the 1960s another language attracted a
good deal of my attention. This was the language EULER,
introduced in two papers published by Niklaus Wirth and
Helmut Weber in 1966 [144]. This language was a derivative
of ALGOL 60 and provided generalizations of some features,
although it abandoned static typing. Its primary attraction to
me was the inclusion of a complete formal (and machine
independent) definition of both the syntax and semantics.
BNF provided the standard means of accurately describing
programming language syntax, but was not directly useful to
describe semantics. Wirth & Weber developed a formal
means of precisely describing semantics and used EULER as
their case study demonstration. They attached the generation
of code for a virtual, list-oriented machine to the parsing
process for a restricted type of grammar. Each production of
the grammar for EULER was attached to a code fragment
that described an execution effect. As the parsing process
identified the occurrence of a production, it also generated the
corresponding code. This research was an elaborate
harbinger of Knuth’s attribute grammars [93] although it
avoided the construction of a derivation tree by direct
augmentation of the parse procedure, and thereby could only
operate with what are known as “synthesized attributes” in
attribute grammars. However, this was sufficient for a
comprehensive semantic description, and demonstrated how
to avoid later clarifications like that necessary for ALGOL 60.

For several years, I used EULER and its associated formal
description in a graduate course on programming language
foundations. It provided a superb illustration of the complete

	 44	

formal description of a language. The language description
included detailed operational development for parsing, code
generation, virtual machine and interpreter, providing a model
suitable for creating an implementation of EULER. This was
done under my oversight at the University of Iowa (and by
others at other universities), allowing experimentation with
some relatively intricate EULER programs. The EULER
description exposed the complication and subtlety that derive
from ALGOL’s block structure scope rules, call-by-name
parameter transmission, procedures as arguments, etc. I
gained much better insight into these issues by augmenting
the study and use of the EULER description with that
implementation effort, and I believe it was a fruitful
educational tool. While there were a number of efforts at
connecting formal specification of language syntax and
semantics with implementation, I regarded the EULER project
as a model of conciseness and completeness.

Although in the early 1970s, the first programming course at
the University of Iowa still taught FORTRAN, a new wave of
language change was on the horizon. Two programming
languages appeared that were destined to have a profound
effect on computer programming. These languages were C
and Pascal. However, I did not seriously pursue either of
these languages initially and so I’ll defer any comments
relating to them until a bit later. Instead, I became interested
in a language that embodied a distinctly different paradigm –
SNOBOL – and this is the direction I pursue next.

Advancing the Theory of Programming Languages
As briefly alluded to earlier, in the early 1960s a variety of
formalisms for language description began to appear that
would have profound effects on the design and
implementation of programming languages and systems. The

	 45	

regular expression concept from automata theory had already
undergone substantial theoretical investigation, and had
obvious potential for practical application. The use of BNF to
describe ALGOL 60 instantly established it as a mainstay for
programming language syntax. The Chomsky hierarchy of
grammars and languages devised for the analysis of natural
languages had immediate relevance to programming
languages. And lastly, the development of the programming
language SNOBOL provided a cogent practical alternative for
describing collections of strings.

Regular expressions first made their way into text editors and
operating systems [127] and evolved into a substantially more
expressive mechanism than the theoretical expressions that
Kleene [91] had devised. This mechanism together with
common extensions has no universally accepted name, but is
often referred to as extended regular expressions and that is
the term I will use in this document. Consequently, the well-
developed theory of regular expressions from automata
research has limited applicability to the extended regular
expressions that have come to be part of numerous
programming systems. These enhanced mechanisms are a
key component in a long list of modern programming
languages, editors and systems [60].

Chomsky’s work on grammars [24] provided a rigorous
framework for formal language research and this blossomed
into an active research area. I followed the theoretical side of
the research on formal grammars diligently as it progressed.
One of the grammars in the Chomsky hierarchy, the context-
free (or type 2) grammar turned out to be a direct match with
BNF, and its formal basis applied immediately to languages
described by BNF. As a result, a variety of theoretical
properties, plus ideas of direct practical use such as syntax

	 46	

trees and parsing methods were soon being adapted to
programming languages (see e.g. [58]).

At the heart of the SNOBOL language [35] was a construct
known as a “pattern” that manifested a distinct alternative to
describing and processing strings. The SNOBOL pattern
concept anticipated the enhancements to regular expressions
that would make them so practically useful, and included
several more features of significant practical value. The aim
of SNOBOL was practical rather than theoretical, and
practical programming ideas preceded any theory. But it was
a relationship with other theoretical investigations I’ve noted
that drew my interest, and I’ll discuss these connections next.

SNOBOL was begun in 1962 by a group at Bell Telephone
Laboratories led by David Farber. It went through a sequence
of versions [70] before a widely available implementation of
SNOBOL4 [68] became available for the IBM 360 System in
1968 when it attracted my serious attention. SNOBOL4 was
intended to facilitate string processing, and provided a
drastically different programming paradigm. The central
feature of the language was the string pattern and the closely
associated pattern matching process. By providing access,
processing, and reuse of substrings encountered during the
matching process, SNOBOL enabled succinct and flexible
string processing in a way not found in any other language.
Moreover, SNOBOL provided a clean and intuitive syntax,
and embedded it in a success-failure control structure with
automatic backtracking that was very natural to this
processing paradigm. The emphasis on string processing did
not lead to the exclusion of basic features of a general-
purpose language. SNOBOL4 included integer and floating
point arithmetic, arrays, tables, and programmer defined data
types. By 1970 I was using SNOBOL4 in an upper-level

	 47	

undergraduate course on concepts in programming
languages.

The semantics of SNOBOL4 patterns were intimately
connected to the matching process, and the success or
failure of matching guided the flow of control with automatic
backtracking in the matching process. The matching process
was described in an entirely operational way [69] by an
elaborate description of the scanning process and how each
pattern element moved a cursor through a subject string. This
included pattern elements that stored a partially matched
substring in a program variable for later use (in the same
pattern). Nonetheless, this paradigm had the potential for a
much more declarative view. A basic aspect of a SNOBOL4
pattern was that it constituted the description of a collection of
strings. It seemed of eminent value to me to gain insight into
the limits of the kind of collection that might be describable
through various types of pattern elements, and this motivated
me to develop a formalism suitable for theoretical study of the
pattern concept.

In 1971 I published a paper [42] that began with a
formalization of the linked-list concept familiar from IPL-V.
Using this formalism I showed that one natural view of the
sequencing of the elements appearing in a list structure was
captured by the language of a context-free grammar whose
structure is effectively isomorphic to that of the list structure.
This formalism was then extended to capture SNOBOL4
patterns that include embedded defined functions and their
application to matched (sub)strings. With this extended
model, and using only finite-state string mappings for
embedded functions, another result showed that any
recursively enumerable language could be described. I found
such theoretical insights to be of considerable practical value
in programming problems involving pattern design, both

	 48	

through better general understanding and in the identification
of pattern elements to be employed. This line of investigation
of declarative semantics of patterns became a long-range
research topic for me and resulted in several more papers in
subsequent years [47, 100, 49]. In passing, I note that not
until recent years has analogous theoretical investigation of
extended regular expressions been seriously pursued (e.g.,
[22, 1, 59]).

Evolution of Types and Control Structures
Niklaus Wirth had joined the IFIP Working Group to define a
successor to ALGOL in 1964. He eventually submitted one of
two proposals to the group, but the competing proposal was
selected. Wirth’s proposal had included Hoare’s suggestion
[75] for dynamic records as an ALGOL extension. After the
rejection by the IFIP Working Group, Wirth and Hoare
independently pursued this proposal and produced a
language that became known as ALGOL W [145]. This
language was only implemented on IBM 360/370 computers,
but I did briefly use it in our advanced undergraduate
concepts course. ALGOL W was interesting for its
development of types. The original FORTRAN [82] did not
have types – it distinguished only fixed point and floating point
values and variables. ALGOL 60 did incorporate a type
concept, but was nearly as limited with only ‘integer’, ‘real’,
and ‘Boolean’ declaration of variables. The ALGOL W
proposal expanded the basic types of ALGOL 60 with
‘complex’, ‘bit’, ‘string’, and ‘reference’ types, and added a
dynamic structured record type intended to accommodate list-
structure programming provided earlier by languages such as
IPL-V. ALGOL W therefore provided a significant advance in
giving type concepts a central role in programming
languages, providing a preview for what we next see in
Pascal.

	 49	

By the latter half of the 1960s a movement to “structured
programming” was beginning to gain broad support (e.g., [17,
31, 32]). Concern over unrestrained structural organization of
programs [31] led to the use of single-entry/single-exit control
features as a primary ingredient of this methodology. Pascal
was the creation of Niklaus Wirth [146] and was first
announced in a 1970 technical report. The Pascal language
provided strong support for structured programming with a
simplified ALGOL 60 for-statement, and added while-
statements, repeat-statements, and case-statements. Also
Pascal expanded the steps taken by ALGOL W on the role of
types. The reference type (changed to ‘pointer’) was given
broad applicability, ordinal and ‘char’ types were included as
simple types, enumerated and subrange types were added as
was a new set type. And Pascal added a means for
programmer-defined types. Pascal required type declarations
for all program entities, and continued the strong static typing
philosophy in compilation to enhance efficiency and prevent
an operation or procedure being inadvertently applied to
unintended data.

The diverse combination of control and data structures made
Pascal an attractive language for a wide variety of
applications. None-the-less it was rather slow to attract
adoption in the U.S. In the U.S., one factor was overcoming a
large base of established software available for commercial
languages. Another factor was that the initial compiler created
by Wirth was for CDC computers that were not that common
in U.S. industry. The most significant influence for the
success of Pascal was the availability of a free and easily
portable implementation known as the P-code compiler [113].
Following the strategy used with EULER, a virtual computer
was devised with an associated Pascal compiler so that all
that was required for a Pascal implementation on another

	 50	

computer was writing a P-code interpreter. While this led to
slow execution times that impaired industrial adoptions, it did
not significantly deter an academic enterprise, and a free
implementation plus the language’s attractive features were
irresistible in that arena.

As its popularity spread and implementations proliferated, the
call for a standard for Pascal gained much support. One
central feature of ALGOL 60 and its descendants, including
Pascal, is the idea of block structure and its use as the
natural scoping unit. A colleague and I had noticed that as the
variety of kinds of elements in Pascal had grown and
interactions abounded, not all the language rules honored the
scoping role of block structure. We believed it would be easy
to implement a resolution of the offending cases we had
observed, and made a contribution to the standards
discussion [9, 10].

The totality of types in Pascal had become quite diverse with
enumeration and subrange types, arrays that may be ‘packed’
or not, variant and normal records, a new set type, plus an
added means for the programmer to define types. Throughout
its literature (e.g., the Pascal “bible” [86]), the phrase “same
type” is used with no elaboration when expressing strong
typing requirements, and while the standard [2] gave greater
care in describing “type compatibility”, the “same type” phrase
was carried forward in numerous places. The purpose of
strong static typing serves efficiency of implementation. But
just as well it avoids errors of applying inappropriate
operations to data values as early as possible, and this is an
essential characteristic of Pascal typing. I remained with
concern that “correct” typing so at the heart of the language
might be left with possible room for interpretation. For
instance, with the declarations shown in Figure 5, could it be

	 51	

that variables A an B have the “same type” while variables C
and D do not?

var A: array[1..2] of integer;
var B: array[1..2] of integer;
var C: record x,y: integer end;
var D: record x,y: integer end;

Figure 5: Pascal declarations

Later, I pursued an alternative to type equivalence in Pascal.
In mathematics when two things are equivalent (i.e., “the
same”) there are basic expectations for this relationship and it
seems those properties should apply for Pascal types as well.
Thinking about type equivalence led me to an idea for a
somewhat more flexible approach that would still be
straightforward to implement. My approach correlated with a
natural “subtype” idea, and I developed precise definitions
and an associated type checking algorithm in [50].

Two important design goals for Pascal [147] had been to
serve as a sound language for teaching, including teaching
system programming, and to achieve a high level of efficiency
for both the compiler and compiled programs. As the success
and longevity of the language clearly establishes, these goals
were not only attained but exceeded. In 1982 Pascal became
the language used in the beginning two-course sequence in
programming at the University of Iowa, and it remained in that
role for more than a decade! And Pascal was the
programming language of choice at the beginning of Knuth’s
campaign for literate programming [94]. In 1984 Niklaus Wirth
received the ACM Turing Award for his contributions to
programming language development.

	 52	

Distinctive Language Alternatives
Languages that adopt an unorthodox perspective on
computing have often held an attraction for me. Of course,
just getting off the beaten path isn’t necessarily an
accomplishment. But internalizing a truly different approach
does open avenues to new thinking. When facing an
unfamiliar programming task, having diverse options
enhances finding good choices. SNOBOL is one such
language that I have already discussed. In this section I
discuss several others that have expanded my computing
perspective.

Kenneth Iverson developed a “programming notation” he
called APL while teaching in a graduate automatic data
processing program at Harvard in the latter half of the 1950s.
His notation was heavily based on mathematics and matrices,
intended as “a tool for communication and exposition” of
algorithms [34], and motivated by dissatisfaction with then
current programming notations. In its early years, APL was
used as a means to communicate between individuals rather
than as a computer programming language and this was
immediately apparent in its appearance. Although I did not
pursue APL until much later, the first widely available
documentation was published as the book “A Programming
Language” in 1962 [85]. As a brief illustrative example that
distinguishes it from a programming language, one statement
appearing in the APL book (p. 44) is shown in Figure 6.

Figure 6: an APL assignment statement

The APL language has at its heart the array data structure
with no restrictions on dimensionality. It has operations to

	 53	

conveniently construct arrays, to adjust the number and range
of dimensions, and many array-oriented operations. And the
basic scalar operations have their definitions extended to
apply equally well to arrays of any dimension. For instance,
for two linear arrays x = (x1, x2, … , xk) and y = (y1, y2, … , yk),
the expression x+y yields the array of element-wise sums. In
a conventional language one would need to introduce an
index variable and write a loop with a suitable termination test
to describe the same computation. APL programs through
this and numerous other conventions are both remarkably
more succinct yet still improve clarity. Iverson describes the
name APL as an acronym for “A Programming Language”,
but when I think about its profusion of array facilities, it’s Array
Programming Language.

Iverson joined IBM in 1960 where he initially collaborated on
using his language as a means to describe computer
hardware. It was not until the mid-1960s that serious effort
began on developing a computer implementation of APL. This
was challenging for several reasons. The first problem was
that APL used a variety of math symbols, Greek symbols,
special marks, and 2-dimensional spacing. Resolving this
involved the development of a new terminal based on the IBM
Selectric typewriter, plus a specially designed APL type-ball
that provided a tailored 88 character alphabet with many of
the unique APL characters (but only upper-case letters). Even
so the implementation would still require an overstrike
procedure for some operations. And with all that, the
“linearization” of the notation required language adjustments.
But despite these changes, the implementation preserved the
original sense of the language quite well. In 1968 IBM
released a version of APL for its System 360 series of
computers [33], and it was with this interactive system that I
become familiar with APL.

	 54	

The often mentioned “one-liner” phenomenon of APL is a
topic that gets us directly to the quintessence of the language.
This is an informally defined term that refers to the
composition of a selection from the profusion of APL
operators to form an expression that accomplishes a non-
trivial computation. I’ll illustrate what’s meant with a single but
informative example – computing the prime numbers less
than a given bound. This is a common exercise in many
languages. It is one I first did on the IBM 650 (but not this
way), and I was intrigued to see there is a published history of
this programming problem [21]. Imagine this program for a
moment as written in your favorite language. The point is that
this is one line of APL code shown in Figure 7. I present it
here for an insight into APL, and as another instance of the
distinct appearance of APL programs.

 (~T∊T∘ .×T)/T←1↓⍳N
Figure 7: APL primes program

This is not the place for a detailed account of APL operators
and syntax, but a short informal description of the primes
program in Figure 7 does reveal the alternative view that APL
fosters. Given integer N, this program (read right-to-left) first
creates a vector of values 2 through N, from that it creates the
2-dimentional matrix of all products from this vector, then it
next selects occurrences in the original vector of integers that
appear in this matrix (these must therefore be those values
which are products), and finally inverts that selection to obtain
the list of primes! So, no (explicit) loops, tests, etc.; no
quotients and tests of remainders, just the creation of arrays,
multiplications and selections (each by a single operation),
and the correctness is self-evident! This program is a precise
computational description of the primes and conveys the
sense of APL’s earlier use for communication between
individuals. Of course, this program clearly overlooks

	 55	

consideration of both processor and storage efficiency, a
common criticism of APL.

In 1979, Iverson received the ACM Turing award for his
genuinely innovative ideas in programming. But he had a
noteworthy encore that deserves greater recognition than it
has received. This requires a brief chronological fast forward,
but it best fits here. In 1989, Iverson collaborated with Roger
Hui in the development of a language for an ASCII-based
descendent of APL known as J [80]. The special characters
for operators were replaced by a systematic and well-
conceived pairing of ASCII characters, and intrinsic APL
facilities were carried forward into J. But in addition to
selecting a syntactic translation for APL, the language
evolved in significant ways. The APL idea of array shape was
generalized in J, and the idea of array rank was extended to
functions, providing numerous opportunities for both
generalizing and simplifying array operations. Although APL
was not a functional language, it had a substantial functional
core and in J this functional subset is expanded and
emphasized. And free implementations of J are available for
all the common platforms [88]. I have been fascinated to find
an implementation available for my smart phone, where J’s
continued propensity for “one-liners” is a perfect match for the
small screen.

In the mid-1970s the idea of “abstract data types” (ADTs)
attracted growing attention. Actually this term was used to
describe two related but quite distinct ideas. The first was
concerned with programming language facilities to allow
users to code “first class” data types that have equal footing
with those native to a language (e.g., [98, 87, 148]). This was
quickly followed by an alternative idea for the development of
methodology for specification of the behavior of a data type
(e.g., [99, 65, 72]). Specification efforts were concerned with

	 56	

program proving [76, 77], and with precise descriptions of
new data types suitable for that purpose while remaining
devoid of implementation assumptions. The term algebraic
abstract data type (algebraic ADT) was used for these ideas
and this became a central approach for specification, and this
area expanded rapidly in the latter part of the 1970s. I found it
remarkable that without choosing a representation for data
nor providing implementations for the operations, a manifest
description of essential properties was still attainable. The
algebraic ADT requires only names for relevant type domains,
operation names (i.e., for functions with no side-effects)
involved along with their type characteristic, and equational
axioms for operation outcomes.

To augment this vague algebraic ADT outline, a token version
of the standard example of the pushdown stack appears in
Figure 8. Note that the specification expresses terms that
describe each Stack, and it allows the essential last-in-first-
out behavior of operations on a Stack to be deduced from the
equations (for brevity we ignore the issue of top(new)).

Domains: Stack and Item (not otherwise elaborated)
Operations:
 new: Stack – result (a constant) is an empty Stack
 push: Stack × Item → Stack – result Item added to top
 pop: Stack → Stack – result has top item removed
 top: Stack → Item – result is the top Item
Axioms (for all s∈Stack and i∈Item):
 pop(push(s,i)) = s
 top(push(s,i)) = i

Figure 8: Pushdown stack algebraic ADT

As a specification device, algebraic ADTs proved to be
remarkably effective for a vast variety of data type

	 57	

descriptions. This is another instance of a device that while
not a programming language, has such a close connection
that it is appropriate to include in the discussion. The adoption
of algebraic ADTs for specifications soon led to another
problem. For more complex examples, the creation of the
algebraic specification is itself a challenging technical task.
While a suitable specification provides a beneficial means to
gauge the correctness of code, an erroneous specification
can have the doubly harmful effect of leading to incorrect
code but believing it correct. Just as we need to debug code
by running it, it was soon found that computer aids were
needed to discover unintended faults in specifications. Hence
several projects to develop systems to automate the
verification of an algebraic ADT specification arose (e.g.,
[114, 73, 66]). These systems provided execution behavior
given only the algebraic ADT and further blurred the line with
programming languages. While such tailored systems have
some clear advantages, I observed that a widely available
programming system, SNOBOL4, already provided support
directly applicable to this task. I wrote a paper [48] that
developed the incorporation of ADT equations as SNOBOL4
code that allowed for testing of a specification, and included
suggestions for dealing with some subtle issues that can
arise in certain situations.

Through their clustering of a set of operations in direct
proximity to their data, abstract data type ideas (both facets)
were a factor in the development of object-oriented (O-O)
programming. But the first language with objected-oriented
features, SIMULA [27], had anticipated this view by the mid-
1960s. This language was devised to enhance ALGOL 60
with facilities to aid in the creation of simulation programs. It
was quickly recognized that those ideas were of much more
general use, and the next step was SIMULA 67 [28] which
provided objects, classes and subclasses, and inheritance

	 58	

similar to those found in many O-O languages we see today.
And the relation of SIMULA 67 to specification and proving
ideas was soon developed by Hoare [77] with a continuation
of his earlier program proving work. Although I had followed
ALGOL 60 closely, I never did pursue programming in
SIMULA. In 2001 Ole-Johan Dahl and Kristen Nygaard
received the ACM Turing Award for their original development
of object-oriented programming.

My first encounter with O-O programming was Smalltalk-80
[67]. Work on Smalltalk began in the early 1970s and it went
through several versions. In his discussion of the history of
Smalltalk, Alan Kay [90] relates a wide range of factors
influencing its development. Kay mentions the Sketchpad
system [126], ALGOL and EULER, and work on porting an
implementation of SIMULA. But the other factors he includes
range to the broader topics of a changing computing
environment with personal handheld computers, high-
resolution displays, and windows based systems. There are
certainly a wide array of technical and social factors that have
made O-O programming so prominent, and fostered the
explosive development of new O-O languages that has
persisted ever since.

In the Smalltalk-80 description [67] the authors write that
“Smalltalk is based on a small number of concepts”, but I
have to disagree. They base their contention on a list of five
key words in the Smalltalk vocabulary: object, message,
class, instance, and method. In fact, each of those words
itself embraces a number of concepts. The word “object”
involves concepts of data storage, operations upon that data
and associated clustering, and some objects involve such
ideas as the file system. The word “message” involves
concepts of activation, of expression, and communication
through concepts of argument and transmission of

	 59	

arguments, etc. The authors themselves essentially concede
that the claim is an exaggeration when they write: “These five
words are defined in terms of each other, so it is almost as
though the reader must know everything before knowing
anything”. But as the strategy for organizing all those ideas,
the unwavering adherence to the object-oriented
methodology reflected in their five words does indeed lead to
a remarkably homogenous and coherent result. Another
consequence is a simple, easy to learn syntax. The last
component is a class library that provides well-conceived
organization. Where program libraries in conventional
languages are adjuncts of occasional use, the class library is
integral to Smalltalk. The class library also encapsulates the
primary source of complexity in the system and so allows
much of that to be internalized gradually. In 2003 Alan Kay
received the ACM Turing Award for his work on the
development of Smalltalk.

My experience with Smalltalk-80 was mostly in its use as a
teaching system. I began using it in an advanced
undergraduate course on programming language concepts in
the latter-1980s. The initial Smalltalk-80 implementations
were only available for interactive platforms with high-
resolution graphics, and these machines were not feasible in
our classroom setting at the time. The system I initially used
was Little Smalltalk developed by Timothy Budd [20] who in
facing a similar circumstance, created an implementation for
Unix3-based systems that was freely distributed. This system
made concessions to run on text terminals, but the essential
sense of the language was still evident.

Much later I published a paper [54] that presented a means to
enhance algebraic ADTs to provide specifications for object

																																																								
3 Unix is a registered trademark of The Open Group

	 60	

classes. In their usual role, algebraic ADTs model collections
of functions – there’s no shared state or side-effects. My idea
retained the equational character, and based the specification
on sequences of messages rather than individual messages.
This captured the shared store at the same level of
abstraction as functions, and provided modeling for a
changing store without a prescribed configuration of instance
variables, just behavior of methods. The paper illustrates that
a specification given in this way can be used for the
verification of varied implementations and storage
configurations, using Smalltalk as the programming language.

Declarative Languages
The “declarative” adjective could be applied to numerous
languages these days. I won’t pursue a careful definition, but
for me the key issue is the focus on results, and the key
feature is variables as they’re known in mathematics not
conventional programming languages. The declarative
languages emphasize results over process, and have
commonalities with program specification such as the
algebraic ADT I’ve already mentioned. In this section I
discuss three programming languages I’ve had occasion to
consider previously in a case study comparison [52].

Functional programs in the form of lambda expressions [25]
were already there at the dawn of the theoretical foundation
of computer science, preceding computer programming. Later
LISP [104] was an early version of (impure) functional
programming with a version of lambda expressions. While
conceptually interesting to me, I found LISP syntactically
unattractive and never became motivated to pursue it
seriously. As functional programming evolved, it remained a
programming niche for me that I never quite made time for. A
strong interest in functional programming did not develop for

	 61	

me until reading John Backus’ Turing award paper in 1978
[7]. I found his rationale and motivation for functional
programming very persuasive. And the algebraic flavor of his
FP language resonated with my earlier mathematics
background. The direct application of algebraic analysis to
reason about and transform these programs was striking.
Both the conciseness and the reusability characteristics of
functions in this setting were highly attractive. And it was
remarkable that his advocacy for functional programming was
combined with a strong condemnation of traditional
languages for their defects, especially since the award was
given for his fundamental work on these earlier languages.

For some time I followed FP related literature. I developed a
local implementation of FP suitable for experimentation, and
employed it for several years in an advanced undergraduate
class on programming concepts. My interest continued to
develop as I explored the contrasts in this paradigm. I found
the computations that could be expressed using FP’s ‘insert’
operations to accomplish looping (with no explicit iteration or
recursion) quite remarkable. Backus and his colleagues had
noted this in their writing, but it seemed of even greater
significance to me. This was the same operation known as
reduction in APL, and the FP insert-based programs were
reminiscent of APL one-liners. These FP programs employ
conditionals and insert, but avoid explicit loops and recursion.
This gives them a “tree structure” with linear execution along
each path, and they embody a certain essence of FP
programming. Eventually I published a paper [51] that
provided a theoretical basis that identifies the computational
expressiveness of these “insert-based” programs, showing
that every primitive recursive function (e.g., see [29]) could be
programmed in this way. This is an extensive class of total
functions that in its day was regarded in theoretical literature
as including much of practical computing, and whose program

	 62	

counterparts are guaranteed to always halt. My interest in
functional programming was significantly heightened the
following year (1987) when I attended the Institute of
Declarative Programming at the University of Texas (Austin),
one of the University of Texas Year of Programming series. I
was motivated to hear John Backus speaking about recent
work by his group in functional programming [8]. But what
actually most caught my attention in his talk were his highly
complementary comments about David Turner’s work in
functional programming.

	 63	

	 64	

David Turner had developed a series of three functional
languages, plus devising a novel implementation technique
for functional programming [132]. I subsequently focused on
Turner’s most recent language, Miranda4 [133]. This was a
pure functional language but with extensive supporting
features. I was impressed by the conceptual foundation for
Miranda where a program consists of defined functions and
data, applying functions to arguments, and that’s it. Both
arguments and results of functions can themselves be
functions. And the syntax was elegant, providing pattern
matching for clean integration of multi-case definitions, “off-
sides” rules for flexible but clear multi-line definitions, etc.
Miranda also includes the ‘insert’ operation of FP (or
reduction of APL), called ‘fold’ (two versions actually),
providing the means of functional programming that I found
so fascinating in FP. Miranda included a strong yet flexible
static type system, an attribute I believe contributes
significantly to avoiding errors in programs, and one that FP
sidestepped. However, Miranda maintains an ease of use by
not requiring type declarations but leaving the implementation
to perform type inference (another application of the
unification algorithm) to determine types. Also included were
facilities for both abstract and algebraic data type definitions. I
found it intriguing to see ALGOL 60’s idea of “call-by-name”
parameter transmission carried to logical conclusion in every
feature of Miranda via “lazy evaluation”. I was further
impressed by a simple and practical comment convention that
provided an effective means to capture the spirit of literate
programming right in the language.

In conclusion for Miranda, I’ll (re)consider the prime number
program that was presented earlier as an APL example

																																																								
4 Miranda is a trademark of Research Software Ltd.

	 65	

(Figure 7). If we follow the method used in APL, a Miranda
version is the function definition shown in Figure 10.

primesTo n = [p | p <- [2..n]; ~member prds p]
 where prds = [q*r | q,r <- [2..n]]

Figure 10: Miranda primes program

Miranda is not as succinct as APL as it lacks such a breadth
of pre-defined operators. But this program still replaces
explicit loops with a pre-defined list comprehension operation
and list membership predicate, and retains the appearance
(and clarity) of straight-line code (a “two-liner”). The
correctness is as self-evident as for the APL code (more so
I’d say), but it’s the same method so the efficiency issues
remain. The clarity and coherence of Miranda is remarkable. I
regard it as the best language design I have encountered and
still enjoy programming with it. I note in passing that a
Miranda program was used in the case study paper
mentioned at the beginning of this section, and in 1989 the
execution of that program took 50 minutes on our
departmental (Digital Equipment Corp.) VAX-11/780 and now
takes less than one second on my personal iMac.

This brings me to the last language I will discuss. Prolog was
initially devised in 1972-73 in a cooperative effort led by Alain
Colmerauer and Philippe Roussel [26] with a primary
motivation of natural language processing. A more mature
version with broader goals began wider distribution in the
mid-1970s. However, I remained only vaguely aware of the
area for the next decade. In 1965 (John) Alan Robinson had
published the celebrated unification algorithm and resolution
principle [120]. This was a major advance in automatic
theorem proving, and provided a basis for the creation of the
Prolog programming language and the initiation of logic

	 66	

programming generally. Alan Robinson became the founding
editor of the Journal of Logic Programming in 1984. In 1985
he spent a week visiting in our department and lecturing on
logic programming (esp. Prolog). Alan was very generous
with his time throughout his visit, and an entirely gracious
guest. His presentations were inspiring, and his visit was
directly responsible for the development of a long-term
interest in logic programming by myself and several
colleagues and graduate students.

Prolog’s basis in logic and subsequent selection of
computational elements as relations rather than functions was
a generalization with a persuasive potential to enhance
expressiveness. One program can provide the computations
of several programs in conventional (or functional) languages.
Prolog’s reliance on deduction holds the promise of “smarter”
programs. And I found Prolog’s backtrack search strategy
reminiscent of the SNOBOL pattern match procedure, and it
therefore felt like meeting an old friend. So I was quickly won
over to this language. Subsequently several faculty and
graduate students began a regular seminar on logic
programming where we read a wide range of the available
literature. Before long logic programming became one of the
topics in our advanced undergraduate course on
programming language concepts. I recently found it
interesting to note a comment by Alan Kay in his history of
Smalltalk [90]: “It is a pity that we did not know about
PROLOG then or vice-versa; the combinations of the two
languages done subsequently are quite intriguing”.

Somewhat later one of my Ph.D. students and I developed
the use of logic programming as a means to enhance the
attribute grammar mechanism for semantic description of
programming languages [121]. Rather than taking attributes
as data values associated with derivation tree nodes and

	 67	

describing them by functional semantic rules, we advocated
using predicates as the attributes. Then the attributes become
active rather than passive elements, and the semantic rules
are clauses describing the properties of these predicates.
This enhances expressiveness with the generality of
relational programming, and logic variables provide
bidirectional communication that allows tree traversal
(synthesized vs. inherited attributes) to be effectively
transparent. Moreover, Prolog support for DCG grammars
allows syntax rules to be explicitly and coherently embedded
within this one formalism.

In the latter part of my teaching career, I undertook the effort
to use Prolog (with a strong emphasis on underlying logic) as
the language in an “experimental” first programming course
for incoming freshmen at the University of Iowa. While I was
uncertain at the outset, this course proved to be a popular
success with the students who took it. I taught the course for
six years, and soon became convinced that this is a superior
way for students to develop conceptual foundations prevalent
in programming, and of value in a variety of languages that
might be later pursued, while becoming familiar with a tool of
lasting practical utility. I described the approach I took in [56].
I’ll end with one last note in passing. A Prolog program was
also used in that case study paper mentioned at the
beginning of this section, and in 1989 the execution of that
program took 7 minutes on our departmental VAX-11/780 and
now takes less than one second on my personal iMac, and a
preferred version of that program which would only abort for
lack of sufficient space on the VAX-11/780 now completes
with no difficulty on my personal iMac.

	 68	

Summary and Conclusions
As my professional career progressed, my realization that
programming languages are much more than just tools to
express our preformed ideas continued to grow. As we
internalize a programming language, its form and structure
molds our thinking at that level of abstraction. Creating a
program is a process that requires bridging from a higher-
level problem domain to a precise description about how a
computation is to unfold within the conception of our adopted
language. That intellectual process cannot avoid being
shaped by the ideas embodied in the language used for its
expression. Of course, we may conceive of a computational
approach to solving a problem at an abstraction level apart
from any programming language. But when it comes to
getting a computer to carry out our approach, we will think of
its solution all over again with our internalized knowledge of
the organization and facilities provided by a chosen
programming language providing the basis at every step. The
thoughts underlying both construction and verification of our
program can only occur to us by virtue of the structure,
organization, and properties of the language that we have
assimilated. So it is not just the expression of ideas, but also
the very formation of our computational ideas for which we
can thank our programming language.

The evolution of programming languages has led to an
increasing distance between the programmer and the details
of a particular computer. While a universal Turing machine
[131] may be sufficient for any computation, it is through more
artful languages that we achieve “better” programs. As has
been long realized, the metrics for “better” programs may be
highly varied and so the proliferation of programming
languages will surely continue. This is a phenomenon to be
celebrated, as I foresee no limit to the progress that may be

	 69	

achieved. However, it may be challenging to determine which
of numerous new ideas are actually “better”. This is where I
believe that solid knowledge of what has occurred in the past
can improve our judgment.

In conclusion, I summarize those languages whose learning
had the most significant impact on my personal
understanding and appreciation of programming languages.
This leads me to highlight nine of the languages I have
mentioned. Each of these languages illustrates that the use of
the collection of elements it incorporates leads to a distinctive
conception of the programming process. The experience with
each of them had a predominant influence on my
understanding, and I briefly mention my reasons for each
selection. I believe that each of these languages warrants
broad general recognition for its contributions to fundamental
programming language ideas, and that such general
recognition is of value to further progress. However, I express
my selection of these nine languages based on the
importance of their influence in my personal development:
• FORTRAN: as the most successful early example to raise

the level of abstraction far above that of the particular
computer to carry out a computation, and encompassing a
majority of features found in higher-level languages for
years to come

• ALGOL 60 and BNF: for the convincing presentation of a
means to precisely describe a systematically coherent,
general, and flexible syntax, for nested scoping constructs,
and for embracing recursion

• EULER: for demonstrating a methodology for a description
of semantics of traditional languages that is both formal
and practical, and for demonstrating the practical utility of
highly restricted (i.e., precedence) grammars

	 70	

• APL and its ASCII-based descendant J: for extensive
development of an array-oriented language that provides a
conceptually distinct paradigm for computing

• SNOBOL4: for an alternative paradigm based on
backtracking and success/failure control structures, text
processing, and generalized regular expressions

• Smalltalk-80: as an exemplary object-oriented language
• FP: simplicity and power of functional programming, the vast

extent of programs that can be written without either
iteration or recursion, and the suitability of algebraic
methods of reasoning about programs

• Miranda: elegant functional programming, strong static
polymorphic typing with type inference, and lazy evaluation
used to great advantage in enhancing expressiveness

• Prolog: versatility and practical expressiveness of logic
programming and the relational paradigm, formal (i.e.,
DCG) grammars as a programming feature, great utility for
prototyping, potential benefits as a first programming
language.

	 71	

Bibliography

[1] P. Alevoor, P. Saeda & K. Kapoor, “On the decidability
and matching issues for regex languages”, Proc. Int.
Conf. on Advances in Computing, (Aswatha Kumar M.,
Selvarani R. & T. V. Suresh Kumar, eds.), Springer-
Verlag, 2012, 137-145.

[2] American National Standards Institute, Inc., IEEE

Standard Pascal Computer Programming Language,
ANSI/IEEE X3.97-1983, 1983, 128 pp.

[3] M. A. Arbib, “Automaton automorphisms”, Inform. and

Control 11 (1967), 147-154.

[4] W. F. Atchison, et al, “Curriculum 68: recommendations for

academic programs in Computer Science”, Comm. ACM
11 (1968), 151-197.

[5] J. Backus, “The syntax and semantics of the proposed

international algebraic language of the Zurich ACM-
GAMM conference”, Proc. Int. Conf. on Information
Processing, UNESCO (1959), 125-132.

[6] J. Backus, “The History of FORTRAN I, II, and III”, ACM

SIGPLAN Notices 13 (1978), 165-180.

[7] J. Backus, “Can programming be liberated from the von

Neumann style? A Functional style and its algebra of
programs”, Comm. ACM 21 (1978), 613-641.

[8] J. Backus, J. Williams & E. Wimmers, “An introduction to

the programming language FL”, Research Topics in

	 72	

Functional Programming (D. A. Turner, ed.), Addison-
Wesley, 1990, 219-247.

[9] T. P. Baker & A. C. Fleck, “Does Scope = Block in

Pascal?”, Pascal News 17 (1980), 60-61.

[10] T. P. Baker & A. C. Fleck, “A Note on Pascal Scopes”,

Pascal News 17 (1980), 62.

[11] B. H. Barnes, “Groups of automorphisms and sets of

equivalence classes of inputs”, Jour. ACM 12 (1965),
561-565; also presented at ACM National Conf.
(Denver, CO), 1963.

[12] Z. Bavel, “Structure and transition-preserving functions

of finite automata”, Jour. ACM 15 (1968), 135-158.

[13] Z. Bavel, “On the number of automorphisms of a singly

generated automaton”, Comm. ACM 13 (1970), 574-
575.

[14] Z. Bavel, Introduction to the Theory of Automata, Reston

Pub., 1983, 658 pp.

[15] E. Ben-Sasson, Y. kaplan, S. Kopparty, O. Meir & H.

Stichtenoth, “Constant rate PCPs for circuit-SAT with
sublinear query complexity”, Jour. ACM 63 (2016), 32:1-
32:57.

[16] D. G. Bobrow, & B. Raphael, “A comparison of list-

processing languages: including a detailed comparison of
COMIT, IPL-V, LISP 1.5, and SLIP”, Comm. ACM 7
(1964), 231-240.

	 73	

[17] C. Böhm & G. Jacopini, “Flow diagrams, Turing machines
and languages with only two formation rules”, Comm.
ACM 9 (1966), 366-371.

[18] J. M. Boyle & A. A. Grau, “An algorithmic semantics for

ALGOL 60 identifier denotation”, Jour. ACM 17 (1970),
361-382.

[19] R. R. Brown, “Tape sets and automata”, Jour. ACM 11

(1964), 10-14.

[20] T. Budd, A Little Smalltalk, Addison-Wesley, 1987, 280

pp.

[21] M. Bullynck, “Programming primes (1968-1976)”, History

and Philosophy of Logic 36 (2015), 229-241.

[22] C. Cˆampeanu, K. Salomaa, S. Yu, “A formal study of

practical regular expressions”, Int. Jour. Found.
Comput. Sci. 14 (2003), 1007–1018.

[23] C-H. Chang & H. Chang, “On the automorphism of

reversible linear cellular automata”, Information
Sciences 345 (2016), 217-225.

[24] N. Chomsky, “On certain formal properties of grammars”,

Inform. and Control 2 (1959), 137-167.

[25] A. Church, “A set of postulates for the foundation of logic”,

Annals of Math. 2 (1932-33), 33-34, 346-366, 839-864.

[26] A. Colmerauer & P. Roussel, “The birth of Prolog”, History

of Programming Languages – II (T. J. Bergin Jr. & R. G.
Gibson Jr., eds.), ACM, 1996, 331-367.

	 74	

[27] O.-J. Dahl & K. Nygaard, “SIMULA – an ALGOL-based
simulation language”, Comm. ACM 9 (1966), 671-678.

[28] O.-J. Dahl, B. Myhrhaug & K. Nygaard, “The SIMULA 67

common base language”, Norwegian Computing Center,
Oslo, 1968.

[29] M. Davis, Computability and Unsolvability, McGraw-Hill,

1958, 210 pp.

[30] E. G. Daylight, “Dijkstra's Rallying Cry for Generalization:

The Advent of the Recursive Procedure, Late 1950s–
Early 1960s”, Computer Journal 54 (2011), 1756-1772.

[31] E. W. Dijkstra, “GOTO statement considered harmful”,

Comm. ACM 11 (1968), 147-148.

[32] E. W. Dijkstra, “Notes on structured programming”, EWD

249, Technical Univ., Eindhoven, Netherlands, 1969, 85
pp.

[33] A. D. Falkoff & K. E. Iverson, APL\360: User’s Manual,

IBM, 1968, 148 pp.

[34] A. D. Falkoff & K. E. Iverson, “The Evolution of APL”, ACM

SIGPLAN Notices 13 (1978), 47-57.

[35] D. J. Farber, R. E. Griswold & I. P. Polonsky, “SNOBOL, A

String Manipulation Language”, Jour. ACM 11 (1964), 21-
30.

[36] A. C. Fleck, Preservation of structure by certain classes

of functions on automata and related group theoretic
properties, Tech. Rpt. No. 16, Computer Laboratory,
Michigan State University, May 1961, 28 pp.

	 75	

[37] A. C. Fleck, “Structure preserving properties of certain

classes of functions on automata”, Notices of Amer.
Math. Society 8:4 (1961), 582-17, p.340; and presented
at the 1961 summer (Aug.) meeting of the Amer. Math.
Society in Stillwater, OK.

[38] A. C. Fleck, “Isomorphism groups of automata”, Jour.

ACM 9 (1962), 469-476.

[39] A. C. Fleck, Algebraic structure of automata, Ph.D. thesis,

Michigan State University Library, 108 286 THS, 1964, 66
pp.; Dissertation Abstracts 25, No.11 (9165), Order No,
65-678.

[40] A. C. Fleck, “On the automorphism group of an

automaton”, Jour. ACM 12 (1965), 566-569.

[41] A. C. Fleck, “On the strong connectedness of the direct

product”, IEEE Trans. Elect. Comput., Vol. EC-16
(1967), 90.

[42] A. C. Fleck, “Towards a theory of data structures”, Jour.

Computer and System Sciences 5 (1971), 475-488.

[43] A. C. Fleck, “On the combinatorial complexity of context-

free grammars”, Information Processing 71 (1972), North-
Holland Pub., 59-60; also presented at IFIP71, Ljubljana,
Yugoslavia.

[44] A. C. Fleck, S. T. Hedetniemi & R. H. Oehmke, “S-

semigroups of automata”, Jour. ACM 19 (1972), 3-10,

[45] A. C. Fleck, “An analysis of grammars by their derivation

sets”, Inform. and Control 24 (1974), 389-398.

	 76	

[46] A. C. Fleck, “On the impossibility of content exchange

through the by-name parameter transmission
mechanism”, ACM SIGPLAN Notices 11 (1976), 38-41.

[47] A. C. Fleck, “Formal models for string patterns”, Current

Trends in Programming Methodology Vol. IV: Data
Structuring (R. Yeh, ed.), Prentice-Hall, 1978, 216- 240.

[48] A. C. Fleck, “Verifying abstract data types with

SNOBOL4”, Software – Practice and Experience 12
(1982), 627-640.

[49] A. C. Fleck & R. S. Limaye, “Formal semantics and

abstract properties of string pattern operations and
extended formal language description mechanisms”,
SIAM Jour. Comput. 12 (1983), 166-188.

[50] A. C. Fleck, "A proposal for the comparison of types in

Pascal and associated semantic models", Computer
Languages 9 (1984), 71-87.

[51] A. C. Fleck, "Structuring FP-style functional programs",

Computer Languages 11 (1986), 55-63.

[52] A. C. Fleck, “A case study comparison of four declarative

programming languages”, Software—Practice and
Experience 20 (1990), 49-66.

[53] A. C. Fleck, Formal Models of Computation, World

Scientific, 2001, 532 pp.

[54] A. C. Fleck, “Specifying and proving object-oriented

programs”, Proc. 2004 Hawaii Inter. Conf. on Computer
Sciences, 190-206.

	 77	

[55] A. C. Fleck, “A simplified view of Nerode equivalence”,

Computing Letters 1 (2005), 93-96.

[56] A. C. Fleck, “Prolog as the first programming language”,

ACM SIGSCE Bulletin 39 (2007), 61-64.

[57] G. H. L. Fletcher, M. Gyssens, J. Faredaens & D. Van

Gucht, “On the expressive power of the relational algebra
on finite sets of relation pairs”, IEEE Trans. On Knowledge
and Data Eng. 21 (2009), 939-942.

[58] R. W. Floyd, “The syntax of programming languages – a

survey”, IEEE Trans. on Electronic Computers EC-13
(1964), 346-353.

[59] D. D. Freydenberger, “Extended regular expressions:

succinctness and decidability”, Theory of Computing Sys.
53 (2013), 159-193.

[60] J. E. F. Friedl, Mastering Regular Expressions (3rd ed.),

O’Reilly Media, Inc., 2006, 515 pp.

[61] F. Gécseg & I. Peák, Algebraic Theory of Automata,

Akadémiai Kiadó, Budapest, 1972, 328 pp.

[62] S. R. Ghorpade & K. V. Kaipa, “Automorphism groups of

Grassman codes”, Finite Fields and Their Applications 23
(2013), 80-102.

[63] S. Ginsberg, “On the reduction of superfluous states in

sequential machines”, Jour. ACM 6 (1959), 259-282.

[64] S. Ginsburg, “Some remarks on abstract machines”,

Trans. Amer. Math Soc. 96 (1960), 400-444.

	 78	

[65] J. A. Goguen, J. W. Thatcher, E. G. Wagner & J. B.

Wright, “Abstract data-types as initial algebras and
correctness of data representations”, Proc. Conf. on
Computer Graphics, Pattern Recognition and Data
Structure, 1975, 89-93.

[66] J. A. Goguen, “Some design principles and theory for

OBJ-0, a language for expressing and executing algebraic
specifications of programs”, Proc. Conf. on Math. Studies
of Infor. Proc. (E. Blum, M. Paul & S. Takasu, eds.), 1979,
LNCS V.75, Springer-Verlag, 425-473.

[67] A. Goldberg & D. Robson, Smalltalk-80: the language and

its implementation, Addison-Wesley, 1983, 714 pp.

[68] R. E. Griswold, J. F. Poage & I. P. Polonsky, The

SNOBOL4 Programming Language, Prentice-Hall, 1968,
221 pp.

[69] R. E. Griswold, J. F. Poage & I. P. Polonsky, The

SNOBOL4 Programming Language (2nd ed.), Prentice-
Hall, 1971, 258 pp.

[70] R. E. Griswold, “A history of the SNOBOL programming

languages”, History of Programming Languages, ACM
(1981), 601-645.

[71] J. W. Grzymala-Busse & Z. Bavel, “Characterization of

state-independent automata”, Theor. Comput. Sci. 43
(1986), 1-10.

[72] J. V. Guttag, E. Horowitz & D. R. Musser, “The design of

data type specifications”, ICSE ’76: Proc. 2nd Int. Conf. on
Software Eng., IEEE, 1976, 414-430.

	 79	

[73] J. V. Guttag, E. Horowitz & D. R. Musser, “Abstract data

types and software validation”, Comm. ACM 21 (1978),
1048-1063.

[74] J. Hartmanis & R. E. Stearns, Algebraic Theory of

Sequential Machines, Prentice-Hall, 1966, 211 pp.

[75] C. A. R. Hoare, “Record handling”, ALGOL Bulletin 21

(1965), 39-69.

[76] C. A. R. Hoare, “An Axiomatic approach to computer

programming”, Comm. ACM 12 (1969), 576-580, 583.

[77] C. A. R. Hoare, “Proof of correctness of data

representations”, Acta Informatica 1 (1972), 271-281.

[78] C. A. R. Hoare, “The Emperor’s old clothes”, Comm. ACM

24 (1981), 75-83.

[79] D. A. Huffman, “The synthesis of sequential switching

circuits”, Jour. Franklin Inst. 257 (1954), 161-300.

[80] R. K. W. Hui, K. E. Iverson, E. E. McDonnell & A. T.

Whitney, “APL\?”, APL90 Conf. Proc., APL Quote-Quad
20 (1990).

[81] IBM, 650 Magnetic Drum Data-Processing Machine

Manual of Operation, Form 22-6060-1, 1955, 111 pp.

[82] IBM, Programmer’s Reference Manual (for the) Fortran

Automatic Coding System for the IBM 704, 1956, 51 pp.

[83] IBM, CPS Under TSO PRPO Specification, Prog. No.

5799-ADY, 1968, GH20-4315.

	 80	

[84] M. Ito, “Generalized group-matrix type automata”, Trans.

Commun. Eng. Japan, Sect. E59 (11) (1976), 9-13.

[85] K. E. Iverson, A Programming Language, John Wiley and

Sons, Inc., 1962, 186 pp.

[86] K. Jensen & N. Wirth, Pascal User Manual and Report,

Springer-Verlag, 1974, 188 pp.

[87] R. T. Johnson & J. B. Morris, “Abstract data types in the

MODEL programming language”, Proc. ACM Conf. on
Data: Abstraction, Definition and Structure, SIGPLAN
Notices 11 (1976), 36-46.

[88] Jsoftware Inc., http://www.jsoftware.com.

[89] J. R. Jump, “A note on the iterative decomposition of finite

automata”, Inform. and Control 15 (1969), 424-435.

[90] A. C. Kay, “The early history of Smalltalk”, History of

Programming Languages – II (T. J. Bergin Jr. & R. G.
Gibson Jr., eds.), ACM, 1996, 511-598.

[91] S. C. Kleene, “Representation of events in nerve nets and

finite automata”, Automata Studies (C. E. Shannon & J.
McCarthy, eds.), Princeton Univ. Press (1956), 3-42.

[92] D. E. Knuth, “The remaining trouble spots in ALGOL 60”,

Comm. ACM 10 (1967), 611-618.

[93] D. E. Knuth, “Semantics of context-free languages”, Math.

Sys. Theory 2 (1968), 127-145; errata, ibid. 5 (1971), 95-
96.

	 81	

[94] D. E. Knuth, “Literate programming”, The Computer
Journal 27 (1984), 97-111.

[95] K. B. Krohn & J. L. Rhodes, “Algebraic theory of

machines”, Proc. Symp. Math. Theory of Automata (J.
Fox, ed.), Polytechnic Press, 1963, 341-384.

[96] K. Krohn & J. Rhodes, “Algebraic theory of machines, I”,

Trans. Amer. Math. Soc. 116 (1965), 450-464.

[97] J. A. N. Lee, “Computer Pioneers”, IEEE Computer

Society, 1995,
http://history.computer.org/pioneers/weeg.html.

[98] B. Liskov & S. Zilles, “Programming with abstract data

types”, ACM SIGPLAN Notices 9 (1974), 50-59.

[99] B. Liskov & S. Zilles “Specification techniques for data

abstractions”, Int. Conf. on Reliable Software, ACM
SIGPLAN Notices 10 (1975), 72-87.

[100] K. C. Liu & A. C. Fleck “String pattern matching in

polynomial time”, Proc. 6th ACM Symp. on Principles of
Prog. Lang. (POPL ’79), ACM, 222-225.

[101] R. L. London, “Who Earned First Computer Science

Ph.D.?”, BLOG@CACM (2013),
https://cacm.acm.org/blogs/blog-cacm/159591-who-
earned-first-computer-science-ph-d/fulltext

[102] Z. Manna & J. Vuillemin, “Fixpoint approach to the theory

of computation”, Comm. ACM 15 (1972), 528-536.

[103] Y. Masunaga, S. Noguchi & J. Oizumi, “A

characterization of automata and a direct product

	 82	

decomposition”, Jour. Comput. and Sys. Sci. 13 (1976),
74-89.

[104] J. McCarthy, “Recursive functions of symbolic

expressions and their computation by machine, Part I”,
Comm. ACM 3, 4 (1960), 184-195.

[105] W. McCulloch & W. Pitts, “A logical calculus of the ideas

in nervous activity”, Bull. of Math. Biophysics 5 (1943),
115-133.

[106] G. H. Mealy, “A method for synthesizing sequential

circuits”, Bell Systems Tech. Jour., V. 34 (1955), 1045-
1079.

[107] E. F. Moore, “Gedanken-experiments on sequential

machines”, Automata Studies, Princeton (1956), 129-153.

[108] H. L. Morgan & R. A. Wagner, “PL/C: the design of a

high-performance compiler for PL/I”, Proc. Spring Joint
Comput. Conf. (AFIPS ’71), 503-510.

[109] P. Naur (ed.), et al., “Report on the Algorithmic Language

ALGOL 60”, Comm. ACM 3, 5 (1960), 299-314.

[110] P. Naur (ed.), et al., “Revised Report on the Algorithmic

Language ALGOL 60”, Comm. ACM 6,1 (1963), 1-17.

[111] P. Naur, “The European side of the last phase of the

development of ALGOL 60”, History of Programming
Languages (I. R. Wexelblat, ed.), ACM (1981), 92-139.

[112] A. Newell, & F. M. Tonge, “An Introduction to Information

Processing Language V”, Comm. ACM 3 (1960), 205-211.

	 83	

[113] K. V. Nori et al, “Pascal-P implementation notes”, Pascal
– the Language and its Implementation (D. W. Barron,
ed.), John Wiley & Sons, 1981, 125-170.

[114] M. J. O’Donnell, Computing in Systems Described by

Equations, Lect. Notes in Comp. Sci., Vol. 58 (1977),
Springer-Verlag, 111 pp.

[115] R. H. Oehmke, “On the structures of an automaton and

its input semigroup”, Jour. ACM 10 (1963), 521-525.

[116] M. O. Rabin & D. Scott, “Finite automata and their

decision problems”, IBM Jour. of Research and
Development 3 (1959), 114-125.

[117] G. Radin & H. P. Rogoway, “NPL: Highlights of a New

Programming Language”, Comm. ACM 8 (1965), 9-17.

[118] B. Randell & L. J. Russell, ALGOL 60 Implementation,

Academic Press, 1964, 418 pp.

[119] J. E. Robertson, “The ORDVAC and the ILLIAC”, A

History of Computing in the Twentieth Century (N.
Metropolis, J. Howlett & G-C. Rota, eds.), Academic
Press, Inc., 1980, 347-364.

[120] J. A. Robinson, “A machine-oriented logic based on the

resolution principle”, Jour. ACM 12 (1965), 23-41.

[121] S. Sataluri & A. C. Fleck “Semantic specification using

logic programs”, Logic Programming: Proc. North Amer.
Conf. (E. L. Lusk & R. A. Overbeek, eds.), V. 2 (1989),
MIT Press, 772-794.

	 84	

[122] P. Sebastian & T. P. Johnson, “Automorphism group of
an inverse fuzzy automaton”, Annals of Pure and
Applied Math. 2 (2012), 67-73.

[123] C. E. Shannon, “A symbolic analysis of relay and

switching circuits”, Electrical Eng. 57 (1938), 713-723.

[124] P. W. Shantz, R. A. German, J. G. Mitchell, R. S. K.

Shirley & C. R. Zarnke, “WATFOR–The University of
Waterloo FORTRAN IV Compiler”, Comm. ACM 10
(1967), 41-44.

[125] D. C. Spriestersbach, The Way It Was: The University of

Iowa, 1964-1989, University of Iowa Press, 1999, 263 pp.

[126] I. E. Sutherland, “Sketchpad: a man-machine graphical

communication system”, AFIPS ‘63 – Proc. Spring Joint
Computer Conf., 1963, ACM, 329-346.

[127] K. Thompson, “Regular expression search algorithm”,

Comm. ACM 11 (1968), 419-422.

[128] J. Tian, X. Zhao & Y. Shao, “On structure and

representations of cyclic automata”, Theoretical Comput.
Sci. 609 (2016), 344-360.

[129] J. Tiuryn, “Some results on the decompositiion of finite

automata”, Inform. and Control 38 (1978), 288-297.

[130] C. A. Trauth, “Group-type automata”, Jour. ACM 13

(1966), 170-175.

[131] A. M. Turing, “On computable numbers, with an

application to the Enscheidungsproblem”, Proc. London

	 85	

Math. Soc., Series 2, V. 42 (1936), 230-265; correction,
ibid. V. 43 (1937), 544-546.

[132] D. A. Turner, “A new implementation technique for

applicative languages”, Software –Practice and
Experience 9 (1979), 31-49.

[133] D. A. Turner, “Miranda: a non-strict functional language

with polymorphic types”, Proc. IFIP Int. Conf. on
Functional Programming Languages and Computer
Architecture, Lect. Notes in Comp. Sci., V. 201 (1985),
Springer-Verlag, 1-16.

[134] K. Uemura, “Semigroups and automorphism groups of

strongly connected automata”, Math. Sys. Theory 8
(1974), 8-14.

[135] USA Standards Institute, Inc., USA Standard FORTRAN,

ANSI X3.9-1966, 1966, 36 pp.

[136] J. von Neumann, First draft of a report on the EDVAC,

Moore School of Elect. Eng., Univ. of Pennsylvania, 1945,
101 pp.

[137] G. P. Weeg, Some group theoretic properties of strongly

connected automata, Tech. Rpt., Computer Laboratory,
Michigan State University, May 1961.

[138] G. P. Weeg, “The structure of an automaton and its

operation preserving transformation group”, Jour. ACM 9
(1962), 345-349.

[139] G. P. Weeg, “The group and semigroup associated with

automata”, Proc. Symp. Math. Theory of Automata (J. Fox,
ed.), Polytechnic Press, 1963, 257-266.

	 86	

[140] G. P. Weeg, “The structure of the semigroup associated

with automata”, Computer and Information Science (J. T.
Tou & R. H. Wilcox, eds.; symposium proceedings,
Northwestern Univ., June 1963), Spartan Books Inc., 1964,
230-245.

[141] G. P. Weeg, “The automorphism group of the direct

product of strongly related automata”, Jour. ACM 12
(1965), 187-195; correction: ibid. 14 (1967), 421.

[142] G. P. Weeg & G. B. Reed, Introduction to Numerical

Analysis, Blaisdell Pub. Co., 1966, 184 pp.

[143] Wikipedia, “List of programming languages”,

https://en.wikipedia.org/wiki/List_of_programming_langua
ges

[144] N. Wirth & H. Weber, “EULER: a generalization of

ALGOL, and its formal definition: Part I”, Comm. ACM 9, 1
(1966) 13-25; “Part II”, ibid. 9, 2 (1966), 89-99.

[145] N. Wirth & C. A. R. Hoare, “A contribution to the

development of ALGOL”, Comm. ACM 9 (1966), 423-
432.

[146] N. Wirth, “The programming language Pascal”, Acta

Informatica 1 (1971), 35-63.

[147] N. Wirth, “Recollections about the development of

Pascal”, History of Programming Languages – II (T. J.
Bergin Jr. & R. G. Gibson Jr. eds.), 1996, ACM, 97-120.

	 87	

[148] W. A. Wulf, R. L. London & M. Shaw, “An introduction to
the construction and verification of Alphard programs”,
IEEE Trans. on Software Eng SE-2 (1976), 253-265.

[149] N. A. Zafar, A. Hussain & A. Ali, “Verifying monoid and

group morphisms over strongly connected algebraic
automata”, Jour. Software Eng. & Appl. 3 (2010), 803-812.

