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Preface 
 
This treatise sets forth notes and personal impressions on 
computing from throughout my career. While pursuing my 
education, there were no computer science departments, 
and academic opportunities in computing were rare. I 
indicate the path I followed and how it led me in a 
seemingly preordained way to a career in computing 
education.  
 
My career involved both research and teaching, and 
efforts on both fronts are discussed in the following. I 
always found a natural attraction for more formal aspects 
of computing. Initially this was in conceptual models of 
computing and the universal conclusions they lead to. 
This is reflected in my early research undertaking in 
automata theory. But this soon evolved to the more 
practical concerns of the character of programming 
languages used to express computations, but still with an 
analytical orientation involving allied formalisms. 
 
I assess my experience with programming languages 
extending back 60 years, and cover both well-known and 
some less well-known languages. Over the years a vast 
number of programming languages have been conceived 
so that even being aware of all their names is a challenge 
(e.g., [143]). My writing involves only a small selective list, 
and even for those languages that are mentioned, my 
emphasis is on the context of my experience with the 
language and related personal digressions rather than 
comprehensive language coverage. While the sheer 
number and variation in programming languages can 
appear daunting, I have come to regard the exploration 
and evolution of this language diversity as integral to 
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continued advancement in computing, and my comments 
are intended to express this perspective in various ways.  
 
 

Arthur Fleck 
April 2018 
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Chapter I 
My Initiation into Computing  

 
A Serendipitous Choice 

I first encountered a computer in 1956. I was a junior 
majoring in mathematics at Western Michigan University 
and I decided to enroll in a new computer programming 
course taught by Mr. Jack Meager. The computer used for 
the course was an IBM 650, the earliest mass-produced 
computer with nearly 2000 produced between 1954 and 
1962. The IBM 650 (see Figure 1) used 80-column punched 
cards for input and output, and internal storage was on a 
rotating magnetic drum organized into words consisting of 
ten decimal (technically bi-quinary) digits. The particular 
computer our class used had 1000 words of memory (a 
2000 word memory was an option). 
 

 
Figure 1: The IBM 650 computer (source: Fig. 1 [81]) 
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A considerable complication for our class was that at the time, 
Western Michigan University had no computer at all available 
for student use! Fortunately this class was small (under ten), 
and our enterprising instructor arranged for the class to make 
after-hours use of the data processing center at Whirlpool 
Corporation some 50 miles away. It was amazingly generous 
(and brave) of a major corporation to turn a group of 
undergraduates loose in their data center, but it was a 
fantastic opportunity for us. So twice per week, the class 
spent a long evening traveling, using punch card equipment 
to prepare, and debugging programs conceived during the 
intervening time. Our programming in this course was done in 
machine (and assembly) language. Since the opportunities to 
“try it” were so few, this extremely limited access to a 
computer instilled a lasting appreciation for meticulous care 
during program creation. The only ‘text’ I recall for this course 
was the machine manual [81]. 
 
Machine (and assembly) language is so linguistically primitive 
that I question referring to it as a “language”. Assembly 
language only provides symbolic reference to op-codes and 
memory addresses rather than machine numeric, and it 
includes almost no linguistic structure. Better might be calling 
these “notations” rather than languages, but that’s not the 
usual convention so I won’t protest any further. But issues 
concerning the linguistic characteristics of programming 
languages become a major topic later. 
 
Western Michigan University had just this one course in 
computing at this time. The course was offered in the 
Mathematics Department (it would be ten years before 
Computer Science Departments began to emerge at U.S. 
universities). As a math major I found this to be one of the 
most interesting courses I took. I did repeat the course one 
additional time (at the instructor’s invitation, but for no credit) 
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and gained some further experience, but there were no other 
locally available opportunities at that time. Despite its brevity, 
I found this an informative, even compelling, initiation into 
computing. However at that point it seemed like an interesting 
diversion not at all like a career direction. But the solid 
mathematics background I received would serve me well 
when later events led in that direction. 
 
A noteworthy coincidence occurred during my senior year at 
Western Michigan University. I was invited to join an honorary 
science society, and the induction ceremony revolved around 
a dinner. The after-dinner speaker at that function was Dr. 
Gerard Weeg, a mathematics professor and Computer 
Laboratory staff member at Michigan State University. He 
was a fantastic after-dinner speaker, brilliantly mixing humor 
with an intriguing discussion of computer research projects 
taking place in their Computer Lab. It was fortuitous that I had 
some background relevant to technical issues in this 
fascinating talk that afforded me a deeper appreciation of its 
content. Although I had no idea at that moment that either 
Michigan State or Dr. Weeg would play any role in my future, 
that event turned out to be a harbinger of my future. 
 

Getting Serious 
As I neared the completion of my undergraduate degree I was 
considering a job offer in industry. But I belatedly decided to 
pursue a graduate degree. I applied for admission to several 
graduate mathematics programs, including teaching 
assistantship applications. My admission applications were 
successful, but the teaching assistantship applications were 
not. Because of an advising glitch I had to spend an extra 
semester and so I finished my undergraduate degree in mid-
year, and the middle of the academic year proved to be an 
unfortunate time to seek a teaching assistantship. Since we 
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had already started a family, financial assistance was a 
necessity, and the way forward looked uncertain. However, it 
was my good fortune that the Head of the Mathematics 
Department at Western Michigan University, Dr. James 
Powell, learned through personal contacts of the availability of 
a research assistantship in the Computer Laboratory at 
Michigan State University.  
 
So I submitted an application to the Computer Laboratory at 
Michigan State University (MSU) and as fate would have it, in 
January of 1959 I entered the graduate mathematics program 
at MSU, and began a research assistantship in the Computer 
Laboratory under the direction of Professor Weeg! The 
confluence of a number of apparently unrelated factors had 
combined to lead me to one of a relatively few places at this 
time where the pursuit of computing knowledge and 
education was the central concern. 
 
The Computer Laboratory was the computing service unit of 
MSU. A computer named MISTIC (see Figure 2) had been 
built under the direction of Dr. Lawrence Von Tersch, and 
became operational in late 1957. Dr. Von Tersch was both 
the founder and the current Director of the Computer Lab. 
MISTIC was a duplicate of ILLIAC I at the University of 
Illinois, and was the first computer on the MSU campus. 
MISTIC was a binary machine with 40-bit words and 1024 
words of internal vacuum tube memory. This machine was 
quite fast for its time – under 100 microseconds for an ‘add’ 
operation (fixed point, there was no hardware floating point). 
Input-output was via paper tape and teletype equipment. Over 
the years of its operation, staff at the Computer Laboratory 
eventually constructed and added an expanded magnetic 
core memory, and connected punched card equipment for 
input-output. 
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Figure 2: MISTIC computer, constructed in 19571	

 
 
My initial duties in the Computer Lab were programming 
assignments for MISTIC, the sole computer at the Computer 
Lab for several years after my arrival. But in the early 1960s 
the Lab was anticipating retiring MISTIC through the 
acquisition of commercial computers from the Control Data 
Corporation (CDC). The first arrival was the CDC 160A, a 
small (for the day) desk-size computer, followed a year or so 
later by the CDC 3600, a powerful mainframe computer. 
These machines had architectures that contrasted sharply 
with that of the IBM 650 and MISTIC. The CDC 160A and 
3600 were “modern” computers with index registers, 

																																																								
1 Photo courtesy of Michigan State University Archives 
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asynchronous I/O, interrupt driven processing, magnetic tape 
and high-speed peripherals. The assembly language of each 
of these machines bore the mark of its architectural character.  
 
My programming work during this period was largely on 
systems programming tasks. In fact, the 160A and 3600 
could be cabled together to form an early commercial multi-
processor system, and one of my later programming projects 
employed that configuration. Several long-term users of the 
Computer Lab had substantial investment in software for 
MISTIC and were deeply concerned about its impending 
retirement. To dispel these concerns I was assigned to 
construct a simulator for MISTIC on the new computer(s). The 
simulator was written (in assembly language) for the CDC 
3600, but the 3600 did not have a paper tape reader, and as 
a primary input device of MISTIC, paper tape reader 
operation was embedded in much of its software. However, 
the CDC 160A did have a paper tape reader, so the coupled 
computers were used to program a simulator that provided 
unimpaired execution of any running MISTIC program. This 
provided early (about 1962-63) experience with multi-
processor programming. 
 
The extensive hands-on experience with the MISTIC 
computer was a real touchstone. As a copy of the ILLIAC I 
computer constructed at the University of Illinois in 1952 
[119], MISTIC shared the heritage of being directly based on 
the historic computer architecture devised by John von 
Neumann and others in 1945 [136]. Having only the most 
basic facilities of a von Neumann computer, programming on 
MISTIC routinely required techniques of program self-
modification. A number of alternative features to replace that 
need were already included in the computers replacing it. 
Computer architecture advances such as interrupt driven 
facilities, asynchronous input-output, and various addressing 
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modes would lead to rapid evolution of programming 
techniques. Even back then, the MISTIC experience felt like 
an encounter with computing history.   
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Chapter I I 
A History of Automaton Automorphisms 

 
The Excitement of New Ideas 

In addition to my programming responsibilities in the 
Computer Lab at MSU, I immediately joined an on-going 
reading group of research assistants led by Professor Weeg. 
This group read and met regularly to discuss theoretical work 
in computing. We studied the historic work on Turing 
computability using the book by Martin Davis [29] as the 
source. But much emphasis was given to the finite state 
machine model that came to the forefront in the mid-1950s. 
We studied papers such as Mealy [106], Moore [107], 
Ginsberg [63], and Rabin & Scott [116] as well as others that 
began to appear. This model was developed to aid in the 
design of complex circuits following primary contributions by 
Huffman [79] and Kleene [91]. Inspiration for this formal 
model can be traced back to Shannon’s work on relay circuits 
in 1938 [123], and McCulloch & Pitts’s work on nerve-nets in 
1943 [105]. But the papers published in the mid-1950s 
established the finite state model as it has come to be known. 
This background provided me with crucial early preparation 
and direction for eventual thesis research. However, it would 
remain unclear for some time how, or if, these topics might 
relate to a dissertation in traditional mathematics (the 
Computer Science Department at Michigan State University 
did not commence operation until 1969). 
 
In 1960 Professor Weeg guided me in the initiation of 
research activities and asked about my preferences. After a 
bit of consideration, I was motivated by studies in topology 
where ideas of structure preserving (e.g., continuous) 
transformations are captured in a very general, abstract and 
axiomatic way. So I suggested using an analogous 



	 9	

approach to investigate transformations on automata (e.g., 
reduction to a minimal state machine), although I had some 
doubt this suggestion would be well received. Earlier 
Professor Weeg had worked on algorithms for floating point 
arithmetic for the UNIVAC 1103 at Remington Rand, and at 
this time he was deeply involved in research and writing for 
a book on numerical analysis [142]. So it was unclear to me 
if he would welcome my striking off in a new and 
unestablished direction. But I was pleased (and relieved) 
that Professor Weeg gave his approval. A disadvantage of 
this research direction was that there was no preceding 
work at all to offer guidance on this topic. But this also 
allowed me to dispense with the usual first research step of 
learning what had already been done. Almost at once we 
would be in the midst of the creation of an entirely new area 
of automata research. 
 
Our arrangement was that I would meet with Professor 
Weeg once a week to discuss with him whatever research 
progress I had made. The topological analogy that I chose 
for automata was to use submachines as the open sets. 
This did lead to a continuous function concept with 
desirable properties for the preservation of numerous 
automaton structures of interest. However, in most cases 
the topology was uninteresting, and in cases of the most 
interest (strongly connected automata), the topology was 
trivial. So while it did provide initial results of interest, this 
avenue of research was soon exhausted. But making 
original discoveries was exciting, and seeking to continue to 
pursue investigations of automaton transformations led me 
to consider following analogies with ideas in algebra.  
 
The automaton transformation functions I next considered 
were inspired by the homomorphism concept from algebra, 
and for automata transformations I dubbed them “operation 
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preserving”. The operation to be preserved is the state 
transition function that embodies the structure of an 
automaton. So this might alternatively be called a transition 
preserving transformation. The term I used appeared in a 
number of early published papers. Because of a clear 
analogy with mappings in algebra, as work progressed the 
term homomorphism would sometimes replace it. These 
transformations have strong structure preserving properties. 
The idea is perhaps most simply communicated with a 
diagram. In Figure 3, we focus on a single transition 
between two states in an automaton A, and the condition 
that is required of an operation preserving function h in the 
image automaton B, where h: A → B. 
 

 
Figure 3: operation preserving function 

 
In Figure 3, target states h(s) and h(t) in automaton B are 
required to enjoy exactly corresponding transitions to each 
of those in their source states s and t in automaton A. This 
is often referred to as a “commuting diagram” as when you 
follow h and then x in B you always arrive at the same state 
as when you follow x in A and then h. Basic details of the 
definitions will be more fully described in the next section. 
 
My weekly meetings with Professor Weeg continued as I 
pursued this new direction. But there soon was a change in 
our interaction. In addition to me reporting my new results, 
Professor Weeg began informing me of new results he was 
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obtaining on this topic. This was quite an unexpected turn of 
events to me because of his focused activity in numerical 
analysis as noted earlier. Of course, he had been leading 
our research seminar on automata theory, so a primary 
interest there was clear. But he had not previously 
published in this area. Only later did I gain a fuller 
appreciation when I learned that Professor Weeg’s doctoral 
dissertation was in algebra. At any rate, the nature of our 
interactions shifted to a mutual exchange from that point on. 
 
With Professor Weeg’s guidance I completed research for a 
dissertation to submit to the Mathematics Department just 
as he took a sabbatical leave (for the 1963-64 academic 
year to Iowa State University where he had done his Ph.D.). 
I had finished writing my thesis before his departure, but a 
copy did not get finalized and sent to my committee until the 
start of that academic year. There ensued a long delay with 
no reaction and no setting of a defense date. Professor 
Weeg’s absence complicated communication both with me 
and evidently with my committee members. Eventually the 
defense delay extended through the entire academic year. 
Only after my defense did I learn that this was due to one 
committee member, Dr. John Hocking.  Dr. Hocking was a 
topologist, and as I indicated earlier, the level of topological 
ideas in my initial approach to investigating automata 
mappings was superficial. Apparently this (and I surmise 
perhaps the non-traditional mathematical topic of my work) 
left him reluctant to accept the thesis. This was ironic as my 
inspiration for this perspective on automata transformations 
took root from a topology course I took from Dr. Hocking. 
 
Despite the lack of depth of topological ideas in my initial 
work, the automata mapping results arising from the 
topological perspective were significant and original from 
the automata point of view. And in any case this was a 
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small minority of the thesis with the vast majority of work 
pursuing the algebraic line that was my primary focus. It 
appeared that there might also have been political issues. 
Professor Weeg was only part-time in the Mathematics 
department, had his primary office at the Computer Lab, 
and had research interests primarily related to his Computer 
Lab activity. In addition, as I found out considerably later, 
Professor Weeg had determined by early that spring that he 
would not return to MSU after completing his sabbatical as 
normally required, and there was a dispute over the 
repayment of the partial financial support he received from 
MSU during his sabbatical. At any rate, late in the spring 
quarter a date was finally set for my defense. I found out 
after my defense that Dr. Hocking had agreed to accept the 
judgment of an unbiased, external scholar. This was 
Seymour Ginsburg who Dr. Hocking knew from their days 
together in the graduate mathematics program at the 
University of Michigan. Ginsburg had a well-established 
reputation as an automata theory scholar by this time (a 
reference to some of his work was included at the beginning 
of this chapter), and subsequently enjoyed a long and 
distinguished career in computer science. Happily, 
Ginsburg’s opinion of my dissertation was reportedly 
completely positive, and my thesis defense itself was 
routine. 
 
The remainder of this chapter will set forth the origin of the 
automaton automorphism topic in some detail, including a 
selection of early results. Since proofs of all the results 
already appear in the literature, they are omitted, except 
when those ideas are crucial to explaining the direction of 
the research.  
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Basic Definitions 
I first present the model adopted for our research. Although 
there has been little or no real change in the concept over 
the years, the notation to be used has evolved. Only a 
selected bibliography is provided in the following, but the 
book by Bavel [14] includes substantial bibliographic 
coverage of the topic. 
 
Definition 1 [36, 38]: an automaton A is a triple, A = (S, I, 
M), where S is a finite set (the states), I is a non-empty 
semigroup (the collection of inputs), and M: S × I → S is a 
function (the state transition function). We assume the 
“sequential machine” condition that M(M(s, x), y) = M(s, xy) 
for all x,y∈I and s∈S (the juxtaposition xy denotes the 
application of the semigroup operation to elements x and y). 
 
Several remarks are relevant to this definition. First of all, 
the symbols used to denote the set of states, the inputs, 
and the transition function are arbitrary and can be chosen 
to suit personal taste. The popular convention for the choice 
of symbols has varied over the history of the topic, in part 
guided by the evolution of commonly available typography. 
It is written here as in the first published papers on 
automaton automorphisms, and this continuity will be 
followed throughout. Definition 1 (mostly) followed the 
notation adopted by Rabin and Scott [116]. However, this is 
both a departure from, and a generalization of, the definition 
adopted by most authors at this time, including Rabin and 
Scott. The assumption that the state set S is finite is non-
essential for many results and was not included in our early 
work. But it is assumed by numerous other authors to be 
cited and so is adopted for consistency (and, of course, 
inspired by the concept of the “finite state model”). 
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Definition 1 is a departure from most other work at this time 
by the omission of both outputs of a transducer and final 
states of a recognizer. Some authors subsequently referred 
to this model as a semi-automaton, or quasi-automaton, 
acknowledging that something is missing from an 
“automaton”. Other authors have preferred the term 
transition system, perhaps the most fitting choice. But as 
others have suggested, the term “automaton” is quite 
pliable, and it is the term we (and many others) have used 
so it will be continued here. This model is concerned only 
with state change in response to input, and that is a central 
point as this research intends to focus on aspects of the 
internal structure of the state change of automata.  
 
The generalization aspect of Definition 1 is allowing an 
arbitrary semigroup to serve as inputs. The semigroup 
aspect is an abstraction allowing a wide variety of “input 
elements”, and only requires of them a binary operation that 
is associative. Ginsberg [64] first introduced this 
generalization. Most authors at that time (and many now) 
assumed instead that the inputs consist of all finite 
sequences, written Σ*, where Σ is a finite alphabet of 
symbols (similarly for outputs with their own alphabet when 
they are included). But that case is subsumed in Definition 1 
as Σ* is a semigroup (monoid in fact) under the 
concatenation of sequences, and the flexibility gained (e.g., 
modeling gesture input) by the generalization in Definition 1 
rarely adds complication. 
 
Definition 2 [36, 38]: Given two automata Ai = (Si, I, Mi), i = 
1, 2, a function h: A1 → A2 is understood to be a function 
from S1 into S2; the function h is said to be operation 
preserving if h(M1(s, x)) = M2(h(s), x) for all s∈S1 and x∈I. 
 



	 15	

The operation preserving property is the formalization of the 
condition depicted in Figure 3 (commuting of the 
applications of function h with applications of inputs). If the 
function h is also one-to-one and onto, it is called an 
isomorphism; when A1 = A2, the function is called an 
endomorphism, and if also an isomorphism, it is then 
referred to as an automorphism.  
 
Other authors who study this type of transformation 
sometimes allow the two automata to have different inputs 
and include a mapping between the inputs as well. We have 
discarded that generalization since the focus is on the 
structure of transformations within a single automaton. 
 
The first writings to appear on automaton automorphisms 
were individual technical reports by Professor Weeg and 
myself [137, 36] in May of 1961. During this timeframe, the 
Computer Lab at MSU and many computing research 
organizations produced a technical report series, and they 
were quite widely exchanged between institutions. So while 
not a “published” source, citations to these technical reports 
appeared in a number of early publications on the topic. 
The first “external” presentation of the ideas was my talk at 
the summer meeting of the American Mathematical Society 
in August of 1961 [37]. The first publications were separate 
journal articles by Professor Weeg and myself [138, 38] and 
a conference paper by Professor Weeg [139], all in 1962 
(although the conference paper did not appear in print until 
1963). Also, my dissertation [39] was eventually accepted 
by the Mathematics Department in 1964. I next will highlight 
the major results in these sources. 
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Initial Results 
One algebraic structure naturally associated with an 
automaton, the characteristic semigroup, derives from the 
interplay between input semigroup characteristics and the 
automaton structure. 
 
Definition 3 [36, 38]: inputs x,y∈I of an automaton A = (S, I, 
M) are equivalent (with respect to A), x ≡ y, provided that 
M(s, x) = M(s, y) for all s∈S. 
 
The equivalence classes from this relation partition the 
inputs I into disjoint sets that are written as [x] = {y∈I ⏐ x ≡ 
y}. These classes themselves form the characteristic 
semigroup, S(A), under the natural (and unambiguous) 
operation [x]•[y] = [xy], and we normally just write this 
operation as the juxtaposition [x][y]. S(A) is often referred to 
as a quotient of I by ≡ and written as S(A) = I/≡. The natural 
correspondence h: I → S(A) given by h(x) = [x] is a 
semigroup homomorphism.  
 
For automaton A = (S, I, M), each input x∈I defines a state 
function Mx: S→S, which we write here with postfix notation, 
by (s)Mx = M(s, x). Of course, another input y∈I may define 
the same function, Mx = My as functions. But this is true if 
and only if x and y are equivalent (x ≡ y), so Mx is just 
another name for the equivalence class [x]. And ((s)Mx)My = 
(s)Mxy, so the (finite) collection {Mx ⏐ x∈I} is a functional 
representation isomorphic to the characteristic semigroup 
S(A). 
 
A large variety of properties of the internal structure of 
automata have potential interest, but we will confine this 
presentation to (effectively) four as we proceed. 
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Definition 4 [115]: an automaton A = (S, I, M) is cyclic if 
there exists a state s0∈S so that for each s∈S there exists 
x∈I with M(s0, x) = s; the state s0 is called a generator; 
automaton A is strongly connected if every state is a 
generator (so that transitions exist between each pair of 
states). 
 
Although implicit in work such as Rabin and Scott’s [116], 
the idea of a cyclic automaton was first explicitly identified 
by Oehmke and was named for an analogy from algebra. 
But this analogy has a significant flaw that will be revealed 
shortly. Oehmke introduced the cyclic idea a little after the 
time period under discussion in this section. Later on Bavel 
introduced [12] the name singly generated automata to 
replace the cyclic automata terminology, and I find this a 
much better choice for the reason to be indicated shortly. 
However, it is most succinct and natural to include this 
concept at this point, in conjunction with its global 
counterpart, strongly connected automata (the idea of 
immediate historical relevance). Strongly connected 
automata were introduced much earlier by Moore [107] in 
his study of the input-output distinguishability of states in 
transducers. 
 
It is readily verified that if an operation preserving function 
maps a singly generated or strongly connected automaton 
onto another automaton, then the image automaton is also, 
respectively, singly generated or strongly connected. 
 
Groups are a thoroughly studied class of algebraic systems 
and one of the earliest of my observations prompted 
anticipation that some of this understanding may lead to 
insight into automaton structure. 
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Theorem 1 [36, 38]: the collection of automorphisms of an 
automaton A forms a group. The symbolism chosen for this 
automorphism group was G(A).  
 
By similar analysis, but lacking inverses, there is an 
endomorphism semigroup, denoted by E(A), formed by 
that collection. We will explore numerous relationships 
between S(A), G(A), E(A), and the structure of A. This 
commences with an early result that was a seemingly small 
observation but with substantial consequences.  
 
Theorem 2 [36, 38]: given two automata Ai = (Si, I, Mi), i = 1, 
2, an operation preserving function h: A1 → A2, and a 
generator state s0 of A1, h is completely determined by its 
value for h(s0).  
 
Theorem 2 follows since for any state s∈S1 there is x∈I with 
M1(s0, x) = s, but then h(s) = h(M1(s0, x)) = M2(h(s0), x). Of 
course, we don’t expect an arbitrary choice of h(s0) to 
necessarily be consistent with an operation preserving 
function (e.g., since generator states must map to 
generators), so valid options require verification. But for 
operation preserving functions, an important corollary in the 
case of strongly connected automata is that two different 
operation preserving functions h1 and h2 (h1 ≠ h2) must 
produce different results for every state argument (i.e., if 
there exists a state s with h1(s) = h2(s), then h1 = h2). 
 
This unique determination of an entire function from its 
action on a single argument greatly simplifies the discovery 
of operation preserving functions. In particular, we can 
conclude [36, 38] that the size of the group G(A) cannot 
exceed the number of states in A if A is singly generated – 
briefly stated #G(A) ≤ #SA (we are using #X to denote the 
cardinality of set X). However, while this proof was given in 
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the first publications, this result was only asserted for 
strongly connected automata as the singly generated 
concept had not yet been proposed (in fact, the same proof 
also establishes that #E(A) ≤ #SA for singly generated A). 
 
Professor Weeg had discovered that the automorphisms of 
strongly connected automata have rather special properties. 
An automorphism acts as a permutation of states. A 
regular permutation (on a finite set) is one that is the 
product of disjoint cycles all of the same length.  
 
Theorem 3 [137, 139]: if A = (S, I, M) is a strongly 
connected automaton, then G(A) is a group of regular 
permutations, furthermore each group of regular 
permutations occurs as G(A) for such an automaton. 
 
Then from known properties of regular permutations: 
Corollary [137, 139]: the order of G(A), #G(A), is an integral 
divisor of #S. 
 
This provides a definitive structure for automorphisms and 
improves the earlier result that #G(A) ≤ #S. Professor Weeg 
[139] also provided an algorithm to determine G(A), and 
conversely a constructive method to develop a strongly 
connected automaton A for which G(A) is a given group of 
regular permutations. 
 
Professor Weeg explored a sense in which the structure of 
G(A) is reflected by the behavior of classes of inputs. 
 
Definition 5 [137, 138]: for automaton A = (S, I, M) and s∈S, 
inputs x,y∈I are in agreement (with respect to s), x ~s y, if 
and only if M(s, x) = M(s, y). This is an equivalence relation 
that partitions inputs into classes written [x]s = {y | x ~s y}. 
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Also, for each pair of states s,t∈S there is a set of 
associated transition inputs Ist = {x∈I | M(s, x) = t}.  
 
Each agreement equivalence class may merge several of 
the equivalence classes of the characteristic semigroup. 
Since the agreement classes depend only on a single state 
they are more readily determined than equivalence classes. 
Weeg considers a partition of each agreement class [x]s as 
a union of transition sets, [x]s = Ist  ∪ Isu  ∪ … , where the 
union extends over the transition sets Ist for each t∈S. 
Furthermore, the transition sets Ist  and Isu  are disjoint when 
t ≠ u, and all are non-empty if A is strongly connected. 
 
Finally, Weeg defines an operation (*) on the transition sets 
by Ist * Isu  = Isv provided that M(s, xy) = v for all x∈Ist and 
y∈Isu and he obtains a result connecting automorphisms to 
this transition set operation. 
 
Theorem 4 [138]: if A = (S, I, M) is a strongly connected 
automaton and G’(A) is a subgroup of G(A), then for each 
s∈S there is a collection of transition sets contained in [x]s 
which under the * operation is a group isomorphic to G’(A). 
 
We next take up a structure property arising from an 
observation about the relation between endomorphisms and 
state transition behavior. Suppose there is an input x∈I and 
an endomorphism h that “track” one another, i.e., M(s, x) = 
h(s) for all s∈S (or Mx = h). Then since h commutes with all 
state transitions, the same must be true of transitions by x. 
That is, for all y∈I and all s∈S, M(s, xy) = M(M(s, x), y) = 
M(h(s), y) = h(M(s, y)) = M(M(s, y), x) = M(s, yx). Whether 
an input and endomorphism exist that enjoy this relationship 
is in question, and this leads to the following idea. 
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Definition 6 [36, 38]: an automaton A = (S, I, M) is abelian 
provided M(s, xy) = M(s, yx) for all s∈S and x,y∈I; if A is 
abelian and strongly connected, it is called perfect. 
 
Here is where we encounter the flaw in the choice of using 
the algebra analogy in Oehmke’s selection of the name 
cyclic automaton. In algebra, a cyclic group (or semigroup) 
is necessarily an abelian group (resp. semigroup). 
However, for automata, the cyclic property does not imply 
the abelian property (it is easy to provide even a two state 
counter-example). Hence I find it apposite to avoid that 
potentially misleading ‘cyclic’ term and use ‘singly 
generated’ automata instead. 
 
Any automaton with an abelian input semigroup is abelian, 
but abelian automata may readily occur with an arbitrary 
input semigroup. We also note in passing that the abelian 
property of automata is also invariant under operation 
preserving functions. 
 
In algebra, the abelian case of systems commonly has a 
simpler analysis than the general case. As we will see, the 
same circumstance obtains for automata. For an abelian 
automaton, each function Mx is operation preserving since 
its application commutes with every input. That is, every 
input defines an endomorphism. Further exploration in this 
direction leads to the next result. 
 
Theorem 5 [36, 38]: If A = (S, I, M) is a perfect automaton, 
then G(A) is an abelian group, and for each automorphism 
α, α = Mx for some x∈I. 
 
This result characterizes automorphisms in terms of input 
behavior and that leads to even further conclusions for 
perfect automata. 
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Theorem 6 [38]: If A = (S, I, M) is a perfect automaton, then 
#G(A) = #S and G(A) = S(A) (i.e., every endomorphism is 
an automorphism and their number is the same as the state 
count). 
 
Professor Weeg also proved [138] the converse of Theorem 
6 – i.e., if A is strongly connected, then A is abelian if and 
only if G(A) is abelian and #G(A) = #S. 
 
To conclude this line of investigation we introduce our last 
structure concept of interest. 
 
Definition 7 [116]: Given automata Ai = (Si, I, Mi), i = 1, 2, 
their direct product is A1×A2 = (S1×S2, I, M1×M2), where 
M1×M2((s1,s2), y) = (M1(s1,y), M2(s2, y)), for all y∈I, s1∈S1, 
and s2∈S2. 
 
The direct product was introduced by Rabin and Scott as a 
means to construct a recognizer for the intersection of 
regular languages from their individual recognizers. 
Actually, it provides even more since the one direct product 
automaton can recognize not just the intersection, but also 
each of the two individual languages, their compliments, 
and their union, just by choice of a set of final states. But 
this only scratches the surface of this idea. The direct 
product provides a basis for the study of the decomposition 
of automata into smaller and/or simpler components. It is 
with that perspective that we conclude this section. 
 
Theorem 7 [38]: if A is a perfect automaton, then A is a 
direct product of automata if and only if G(A) is a direct 
product of groups. 
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Since factor automata must again be perfect, Theorem 7 
can be applied repeatedly. From group theory it is known 
that an abelian group is a direct product of cyclic groups of 
prime power order, so we conclude that perfect automata 
must decompose into exactly such components (i.e., each 
input acts as a cyclic transition of prime power order that is 
a factor of the original state set size). Hence in this tightly 
restricted class of perfect automata, we see a precursor to 
the fully general decomposition theory subsequently 
developed by Krohn and Rhodes [95, 96]. 
 
We note in passing that chapter 5 of Gécseg & Peák [61] 
provides a redevelopment incorporating some of the results 
summarized in this section and the next, includes additions 
of their own, and provides a bibliography that includes 
Russian and eastern European work not reported on in this 
document. 
 

Ensuing Developments 
Interest in the automaton automorphism topic spread quite 
rapidly. First locally, Robert Oehmke, a colleague of 
Professor Weeg in Mathematics, became interested in the 
area and published an early paper [115] that has already 
been cited. Also within the first year, two more of Professor 
Weeg’s doctoral students began work in the area. This was 
Ralph Brown and Bruce Barnes, and before long they 
published results [19, 11]. This together with additional 
papers by Professor Weeg and myself [140, 141, 40, 41] 
provided a critical mass of research that attracted a national 
and international collection of researchers to the area. The 
sense of the ensuing follow-on effort is presented here by 
discussing a selection of recurrent threads in the work. 
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Our first thread encompasses transition analysis and the 
characteristic semigroup. Weeg [140] refined his earlier 
work on agreement classes for strongly connected 
automata by exhibiting a homomorphism from a subset of 
the inputs I to G(A). Brown [19] and Barnes [11] continued 
the earlier investigation by Weeg [138]. Brown showed that 
Weeg’s basic results for strongly connected automata also 
hold for singly generated automata (although he used that 
condition without naming it) as long as consideration is 
restricted to agreement classes [x]s where s is a generator. 
 
Barnes [11] continued the work from [138] by showing that 
for a strongly connected automaton, if the complete 
collection of transition sets of [x]s for a state forms a group, 
then G(A) is isomorphic to that group. He also established 
an interesting relationship between subgroups of an 
automorphism group and subautomata (where an 
automaton (S’, I’, M’) is a subautomaton of (S, I, M) if S’ ⊆ 
S, I’ is a subsemigroup of I, and M’ is M restricted to S’× I’). 
 
Theorem 8 [11]: for each strongly connected automaton A 
and subgroup G’(A) of G(A) there is a strongly connected 
subautomaton A’ whose automorphism group G(A’) is 
isomorphic to G’(A). 
 
Later Uemura [134] used semigroup methods to show 
conditions for G(A) to be (isomorphically) embedded in 
S(A), and Masunaga, Noguchi and Oizume [103] presented 
an incisive unification of numerous variants of automata 
structures that are expressed by corresponding algebraic 
properties of the characteristic semigroup (such as singly 
generated abelian automata by abelian monoids, and 
strongly connected state independent automata (see below) 
by right groups). 
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A second thread of interest relates to finding less restrictive 
classes of automata than perfect automata that still exhibit a 
compelling relation between algebraic and automata 
structure. One of the ideas that drew significant attention 
was the group-type automata of Trauth [130] which 
replaced the abelian condition. His approach also unified 
and clarified the earlier work of Weeg, Brown, and Barnes 
[138, 19, 11]. 
 
Definition 8 [130]: an automaton A = (S, I, M) is state 
independent provided that for all s∈S, x ~s y if and only if x 
≡ y. That is, each agreement class [x]s of Weeg is exactly 
one of the equivalence classes of the characteristic 
semigroup. 
 
Definition 9 [130]: an automaton A is called group-type if A 
is state independent and the characteristic semigroup S(A) 
is a group; if A is group-type and strongly connected, it is 
called quasi-perfect. 
 
Trauth provides results showing that the quasi-perfect 
automata are a useful generalization of perfect automata. In 
several ways this is an optimal choice to replace the abelian 
property. For one, A is perfect if and only if A is quasi-
perfect and G(A) is an abelian group. A group-type 
automaton need not be strongly connected. But if it is singly 
generated, then in fact it is strongly connected (i.e., quasi-
perfect). Also, if A is strongly connected and #G(A) = #S, 
then A is quasi-perfect. 
 
Moreover, quasi-perfect automata have other similar 
properties to the perfect case. For instance, for a quasi-
perfect A, S(A) is isomorphic to G(A). Also, while not all 
state functions Mx (for x∈I) are automorphisms (as in the 
perfect case), for quasi-perfect automata A, x is in the 
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center (i.e., M(s, xy) = M(s, yx) for all s∈S and y∈I) if and 
only if Mx∈G(A). An analogy for the result on direct products 
of perfect automata was also obtained but was not as 
persuasive. Trauth’s ideas led to an extended variety of 
other investigations (e.g., [84, 71]). 
 
Another thread in the research was identifying less 
restrictive alternatives for the strongly connected property 
that was so frequently assumed for early automorphism 
results. The most useful and widely studied such property 
was the idea of singly generated (or cyclic) automata 
initiated by Oehmke [115]. Oehmke’s paper was largely 
concerned with right-congruences on automata (a topic we 
do not explore here), but his analysis does lead to the 
conclusion that if A is singly generated and state 
independent (and hence strongly connected), then G(A) is 
isomorphic to a subgroup of S(A). 
 
We have earlier noted that a number of early results that 
were stated for strongly connected automata stand 
essentially without change for singly generated automata, 
and that for state independent automata, the singly 
generated and strongly connected automata are 
synonymous.  
 
Bavel not only introduced the alternative term singly 
generated [12] instead of cyclic, but developed an insightful 
analysis of homomorphisms using automata structure. For 
singly generated automata he generalized Weeg’s result for 
strongly connected automata that #G(A) is an integral 
divisor of #SA by showing that #G(A) is an integral divisor of 
the number of generator states. In fact, when I is a free 
semigroup, he even improves on that [13]. 
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In a succinct unification, Arbib [3] redeveloped many known 
automorphism results for the case of singly generated 
automata, following a variant of the ideas of Oehmke [115]. 
Recently Tian, Zhao and Shao [128] provided an extensive 
analysis of the structure and representation of singly 
generated automata. 
 
The last research thread that we examine in this section 
concerns the direct product structure of automata. In 
addition to the early results on direct product of perfect 
automata, direct product decomposition of strongly 
connected automata with #G(A) = #S (i.e., the group-type 
idea that was subsequently named by Trauth) was shown in 
[40] to be synonymous with a group product decomposition 
of G(A). Also, Weeg [141] gave a sufficient condition for the 
direct product of strongly connected automata that G(A1 x 
A2) is isomorphic to G(A1) x G(A2). More generally, G(A1) x 
G(A2) is a subgroup of G(A1 x A2). 
 
A uniformly structured decomposition of automata was 
developed by refining the methods of Hartmanis and 
Stearns [74], first by Jump [89] using automorphisms and 
then by Tiuryn [129] using endomorphisms. Masunaga, 
Noguchi, and Oizumi [103] also provide several significant 
results on direct product decomposition using both G(A) 
and S(A), including also noticing that the decomposition of 
strongly connected, state independent automata is 
characterized by decomposition of G(A). 
 
The strongly connected property was problematic for direct 
product analysis. It’s immediate to see that if a direct 
product automaton is strongly connected, then the two 
factor automata must also be strongly connected. However, 
the seemingly natural converse is not true. In fact, [41] 
showed that if the two factor automata are even “similar” in 
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the sense of one being the image of the other by an 
operation preserving function, then their direct product 
cannot be strongly connected. So in addition to each being 
strongly connected, a relationship called “strongly related” is 
required of two factors for their direct product to be strongly 
connected, and [41] also provided a necessary and 
sufficient condition for this. 
 

Final Remarks on Automorphisms 
The automaton automorphism concept is a means to 
formalize and quantify symmetries that occur in this model. 
It provides an analysis orientation that fosters insights into 
connectivity properties. This chapter provides only limited 
coverage of the entire body of work that followed from the 
earliest automata automorphism research. Presentation of 
the full scope of that work exceeds the objective of this 
historical account. 
 
While a couple of hundred papers (and several books) 
related to the topic have been published, interest in 
automata automorphisms became widely scattered by the 
mid-1980s. My own attention was already shifting in another 
direction by the mid-1960s, and my alternative pursuits are 
described in detail in the next chapter. Although significant 
interest in classic automata theory (including 
automorphisms) has subsided, use of automorphisms is re-
emerging in a variety of computer science topic areas such 
as: fuzzy automata [122], cellular automata [23], application 
of formal methods [149], database [57], error correcting 
codes [62], and theory of computation [15]. Investigations 
utilizing automorphisms in their analysis have established 
their value with unique and valuable insights, and continue 
to foster contributions in a variety of contexts. 
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Although my research efforts shifted away from this area 
quite soon, I continued an interest in automata and formal 
languages throughout my career. I later published a couple 
of papers on formal languages and hybrid grammars [43, 
45], one on semigroups and automata [44], and another on 
regular languages [55]. Also, several Ph.D. students whom I 
supervised wrote dissertations on topics in automata and 
formal languages. Finally, I frequently taught courses in this 
topic area, and eventually transformed a large collection of 
class notes into a published text [53].  
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Chapter I I I  
Programming Languages Thru the Years2 

 
       Linguistic Structure for Computer Programs 
By the mid-1950s there were a number of efforts at creating 
programming languages that facilitate the development of 
computer programs. Several came to my attention through 
my programming responsibilities at the MSU Computer Lab, 
and FORTRAN was the most successful. FORTRAN 
originated in 1954 with an IBM team led by John Backus. A 
compiler first became available for the IBM 704 in 1957. 
FORTRAN adopted the level of abstraction of familiar 
mathematical expressions rather than machine instructions. It 
relieved the programmer of so much tedious detail, and so 
greatly increased programmer productivity that its use in 
many applications was compelling. This advantage soon 
forced other computer companies to develop Fortran software 
for their own computers. However, compiler construction was 
ad hoc and not well understood, and programmers with any 
related experience were in extremely short supply. So 
FORTRAN did not become broadly adopted or available on 
other manufacturer’s machines until into the early 1960s. In 
my case I had occasion to read about the language, and to 
examine FORTRAN programs, but active use was not 
immediately possible. Since the MSU Computer Lab operated 
CDC computers, it was the early 1960s before I had access 
to an implementation. During the intervening period the 
language had evolved through three versions (see Backus 
[6]).  
 

																																																								
2 An earlier version of this chapter appeared in Turing 
Tales by E. G. Daylight, Lonely Scholar bvba, 2016. 
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Issues about how to provide machine independent 
descriptions of programming languages attracted my interest 
right from the beginning. FORTRAN was initially described in 
a careful but informal way [82], typically in the context of 
examples. For instance, a list of six “Formal Rules for 
Forming Expressions” was given, and in Figure 4 you see rule 
number 6 from that list. 
 

6. If E and F are expressions, and F is not floating point 
unless E is too, and the first character of F is not + or -
, and neither E nor F is of the form A**B, then 

                            E**F 
 is an expression of the same mode as E. Thus 
A**(B**C) is an expression, but I**(B**C) and A**B**C 
are not. The symbol ** denotes exponentiation; i.e. 
A**B means AB. 

Figure 4: FORTRAN syntax rule for exponentiation 
 
One consequence of this informal description was that the 
most convincing argument one could make for or against the 
legitimacy of a FORTRAN program containing an uncertain 
construct was whether or not it worked in “the” compiler. But 
whose compiler – numerous computer manufacturers were 
providing a “FORTRAN” compiler, and they varied 
significantly in what was admissible, and in how an 
admissible program worked. Although FORTRAN’s position 
was dominant in those days, this problem seriously troubled 
its use as it spread from IBM to industry-wide acceptance. 
This difficulty could make portability of a FORTRAN program 
between different manufacturers computers as troublesome 
as writing the program from scratch all over again. This 
situation persisted until 1966 when the first standard [135] 
was established (but significant compatibility difficulties still 
lingered on). 
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I completed my Ph.D. in 1964, and at this time Dr. Von 
Tersch was both Director of the Computer Lab and Head of 
the Electrical and Computer Engineering Department at 
Michigan State. At this pivotal juncture for me, Dr. Von Tersch 
offered me a position in the Electrical and Computer 
Engineering Department with the title of Assistant Professor 
of Computer Science. This title was a bit remarkable in that a 
Computer Science department would not officially exist at 
MSU until four years later (and in the College of Engineering), 
but I did appreciate that gesture. In my first academic 
appointment I taught a yearlong advanced undergraduate 
computer programming course of my own design. And the 
position included a half-time appointment in the Computer 
Lab as head of systems programming. This enabled me to 
continue the software development activity that I had enjoyed 
and valued while experiencing the stimulating activities that 
are inherent in an academic position. 
 
On a related note of historical interest, Dr. Von Tersch’s roots 
had been in Iowa, academically at Iowa State University. 
Later in 1968 Dr. Von Tersch became Dean of the College of 
Engineering at Michigan State, a position he held for more 
than twenty years. He was also instrumental in the 
establishment of the Computer Science Department at MSU. 
He died in 2010 at the age of 87. 
 
During that first year of teaching at MSU I learned my next 
two programming languages. One of these languages was 
ALGOL 60. ALGOL 60 [109] was developed by an 
international committee with the purpose of creating an 
international algebraic language “to describe computational 
processes”, while remaining “as close as possible to standard 
mathematical notation”. The committee members drew on 
experience with existing problem-oriented languages as a 
basis, but they also introduced new ideas with ALGOL 60. 
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The overarching idea of “block structure” was one innovation. 
In addition to providing the organizational basis for 
subroutines, it allowed for nesting of program elements with 
scoping rules that provided for localization of identifiers at any 
point in a program. For procedures/functions two distinct 
means of transmitting arguments (by name or value) provided 
enhanced generality. Also, there were multi-assignment, 
dynamic for-statements, dynamic arrays with generalized 
indexing, etc. Finally, there was one other important feature 
missing in FORTRAN that was provided and fostered in 
ALGOL 60 – recursion, and this inclusion was instrumental in 
bringing recursion into the mainstream (how this came to be 
is an interesting story, see Daylight [30]). Following its 
success in ALGOL 60, recursion became a feature of nearly 
every programming language to follow (even, eventually, 
FORTRAN). The collection of features in ALGOL 60 provided 
new challenges for compiler writers and fostered significant 
research into techniques needed to accommodate them (e.g., 
[118]). The collection of features, their generality, and their 
interactions introduced various subtleties that led to the need 
for a clarifying revision of the defining report [110] three years 
later, and this is a point that will arise again later. 
 
A crucial part of the process of describing this new 
programming language was to incorporate a notation to 
precisely detail what was admissible in the language, and do 
so in a manner completely independent of any specific 
compiler or computer. The conceptual idea for the notation 
was due to John Backus [5], although almost simultaneously 
there were several closely similar but apparently independent 
developments that I’ll return to later. This notation came to be 
known as BNF, an acronym for Backus Normal Form, or 
sometimes alternatively Backus-Naur Form to credit the editor 
of the ALGOL 60 Report, Peter Naur. Although devised by 
John Backus, it was Peter Naur who championed its use 
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[111] in the defining report and coalesced the description of 
ALGOL 60 around BNF. As one small indication of the 
change that the use of BNF brought to the description of 
syntax, consider the clarity of the sole compact ALGOL 60 
BNF rule (from the revised report [110] actually) to express 
exponentiation in an expression (using ↑ for the operation): 
<factor> ::= <primary> | <factor>↑<primary>. And compare 
that with the earlier example of FORTRAN’s syntax rule 
(Figure 3). The use of BNF for the language description made 
it not only eminently more clear and succinct but at the same 
time provided greater generality. John Backus received the 
ACM Turing award in 1977 for his work on FORTRAN and 
BNF, and Peter Naur received the ACM Turing award in 2005 
for his work on ALGOL 60. 
 
ALGOL 60 was an influential programming language for 
several reasons. It incorporated programming language 
features that stimulated years of study and discussion (e.g., 
[92, 18, 102, 46]) that promoted advances in the area. 
Through its reliance on BNF, another aspect of ALGOL 60 
was the utter clarity of its syntax and its avoidance of quirks 
and special cases. By this one example, BNF was instantly 
established as the means to describe programming language 
syntax. BNF is classified as a metalanguage – a language 
used to describe other languages. So while it does not go into 
a list of programming languages, BNF is a linguistic construct, 
and being confident with its use proved to be indispensible to 
subsequent learning of other programming languages. BNF 
has been used to describe almost every language developed 
after ALGOL 60, and it provides a vital tool for pursuing 
foundational work on programming languages. While the 
significance of ALGOL 60 for programming languages is 
profound, experience has shown that BNF has had an even 
greater and more long lasting impact. It is striking that at this 
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early stage, for the second time John Backus played a critical 
role in programming language development. 
 
The second programming language I learned during that first 
year of teaching at MSU was IPL-V. Early versions of the 
language were developed at the RAND Corporation in the late 
1950s. Allen Newell and a group at RAND and Carnegie 
Institute of Technology developed the IPL-V version [112] (the 
first public version) that was initially released in 1960 for 
several IBM computers and subsequently implemented on 
other manufacturer’s machines (including CDC). While 
FORTRAN and ALGOL 60 were designed primarily with 
numeric processing in mind, IPL-V was designed for symbolic 
(non-numeric) processing. It was intended for adaptive 
problem-solving tasks involving symbol manipulation such as 
formal theorem proving. The heart of IPL-V was the linked-list 
data structure – this was a data abstraction that encouraged 
thinking at a higher level, allowed great flexibility and 
generality of data organization, and provided for dynamic 
space utilization. A prominent feature of IPL-V was the 
inclusion of an extensive library of list manipulation operations 
that facilitated symbolic computations. Linguistic 
characteristics of IPL-V were primitive, and I did not use it 
beyond the teaching context that first year. However, work on 
IPL-V inspired much additional interest and its operations 
were to be encountered many times over in subsequent 
languages (see e.g., [16]). During this time period, linked-list 
processing techniques developed rapidly by a variety of 
sources, both practical and formal (e.g., [104]). Years later 
(1975) Allen Newell was co-recipient of the ACM Turing 
award, in part for work on list processing. 
 
While there would be a germination period, my early 
programming experience and particularly my programming 
languages exposure during my first year as a faculty member, 
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would exert a growing influence on my research activities. My 
initial research interest in automata theory would evolve over 
time toward formalisms that were to become vital foundations 
for programming and programming languages. 

 

Settling into an Academic Career 
In 1965 I accepted an offer to join the Computer Science 
Department at the University of Iowa in its inaugural year. 
This was at the invitation of Professor Weeg. Professor Weeg 
had left MSU before I finished my Ph.D., and joined the 
University of Iowa as the Director of the Computer Center 
with a joint appointment as a Professor of Mathematics. In a 
remarkably short time he accomplished the formidable task of 
gaining approval for a new department in a discipline that was 
not yet well established! He served as the first Chair of this 
department as well as the Director of the Computer Center. 
The newly established department was located in the College 
of Liberal Arts and had a close connection with the 
Mathematics Department. My experience in the Computer 
Lab at MSU led me to attach substantial importance to 
continued participation in those associated aspects of 
professional computing activity, and my new position included 
a joint appointment in the Computer Center at the University 
of Iowa. Finally, my new position also initially included a joint 
appointment in the Mathematics Department, a feature that 
strengthened the alignment with my academic identity at that 
point. This was a perfect match with my background and 
interests, and was an opportunity that enabled me to work 
next to Professor Weeg on a daily basis in a multifaceted 
environment. 
 
While a variety of courses and programs could be found at 
numerous institutions, for department-level academic units 
with ‘Computer Science’ in their name, a list by Ralph London 
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[101] shows only 10 departments existing in the U.S. by 
1965, with the first starting in just 1962 (at Purdue University). 
Ralph London also reports that the first Computer Science 
Ph.D. at the University of Iowa was Mortesa Rahimi (in 1968), 
and I note in passing that I was his thesis supervisor. 
 
As the Computer Science Department at the University of 
Iowa was formed, and throughout its early years, there was 
extensive nation-wide debate over just what the definition of 
this newly emerging academic discipline should be. The 
appropriate curriculum was vigorously debated, and new work 
that profoundly advanced the discipline was being published 
constantly. New developments had unavoidably immediate 
impact on the curriculum at all levels. Substantial course 
revisions were needed at virtually every offering of most 
courses, and the introduction of brand new courses continued 
at a brisk pace. Invariably in this situation, textbooks lagged 
behind the current state of knowledge, requiring 
supplementation that further complicated class preparation. 
While there had been several earlier curriculum proposals, in 
1968 the first comprehensive proposal to achieve significant 
acceptance appeared [4] and this subsequently helped to 
bring a modicum of uniformity to academic endeavors (though 
it certainly did not end the debates).  
 
At the time the Computer Science Department at the 
University of Iowa formed, it had no computing equipment of 
its own. Both faculty research and programming classes were 
served by the facilities at the Computing Center, a campus-
wide academic service unit. The Center provided a traditional 
batch-oriented, large mainframe service common during this 
period. Our center was an IBM shop, running an IBM 7040 at 
the outset, and acquired an increasingly powerful succession 
of models of the IBM 360 line beginning in 1965. Students 
and faculty went to the Computing Center to keypunch their 
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programs and data, and submit their card deck to an 
operator. The submitted card decks were "batched" and run 
by Center staff in succession. Sometime later one would 
return (four hour turn-around was typical for "normal" jobs) to 
retrieve the deck and a printout. Because of the high system 
overhead in individual job initiation, large classes 
necessitated the acquisition of "in-core" translators (e.g., 
WATFOR [124]) that would internally process a series of 
small student programs as a single job rather than treating 
each one as a separate job run. This provided a huge 
reduction in system overhead, and together with the advance 
to a multi-processing operating system, led to turn-around of 
an hour or less for short student jobs. Having a department 
chair that was also the Director of the Computing Center 
proved to be advantageous in the competition for software 
acquisition and access to the single campus-wide computer 
facility.  
 
The Computer Center at the University of Iowa proved to be a 
beehive of activity. My formal position there was something 
like ‘head of programming’. But I actually had little opportunity 
for that activity in the early years. The responsibility as the 
campus-wide computing facility implied a diversity of needs 
for service and included some particularly large demands. 
Beginning in 1958, Dr. James Van Allen in Physics had 
radiation sensors placed on satellites that produced vast 
amounts of data requiring analysis. This resulted in the 
discovery of the “Van Allen radiation belt” and led to NASA 
contracts to providing funding for the pressing need for 
computer analysis. Also, in the Education College Everett 
Lindquist had devised the ACT and other standardized 
educational tests. To support the broad adoption of these 
tests Lindquist led the development of the first optical mark 
scanner to supersede the electrical scanners then in use. 
Both the tests and the scanners were very successful and 
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created another large demand for processing capacity. Also, 
the Computer Center was authorized to sell computer time to 
off-campus entities, both educational institutions and industry. 
Area industry was quite active and included the Army’s Rock 
Island Arsenal as a major user (anti-Vietnam protests and the 
Defense Department source of funds eventually brought an 
end this activity in the early 1970s). And with the aid of NSF 
grants for high-speed communication links secured by Dr. 
Weeg, the Computer Center became an active regional 
center for more than a dozen area educational institutions.  
 
From these diverse obligations for computing services, plus 
rapidly increasing enrollments in programming courses and 
expanding use of computing in other disciplines, the need for 
computing resources continually grew at a pace that 
threatened to overrun capacity (sometimes doubling in the 
space of a year). Each expansion would require the purchase 
of a multi-million dollar mainframe computer more expensive 
than the last. The process for each such upgrade required 
creation of a request for proposals based on a thorough 
analysis of the evolving needs to be met, followed by 
evaluation of proposals from various computer vendors for 
their hardware and software configurations, sometimes 
including trips to their facility. Dr. Weeg had me work closely 
with him on these efforts and the political pressures to resolve 
them were often far more pressing than academic matters. 
Despite a variety of funding sources, expenses of this 
magnitude were a major hurdle for a state university and 
required a high priority with the active involvement of the 
central administration to accomplish. The Vice-President for 
Educational Development and Research was D. C. 
Spriestersbach and he bore primary responsibility for 
university oversight of the Computer Center. Dr. Weeg had a 
good working relationship with Spriestersbach who 
enthusiastically accepted the argument that support for 
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research and educational development entailed placing a 
high priority on making excellent computing resources 
available, and Spriestersbach provided consistently positive 
support in the vigorous debate over funding allocations to 
accomplish timely upgrades. 
 
As a related note of historical interest, Professor Weeg 
unfortunately developed a brain tumor and died in 1977 at the 
age of 49. In 1978 the University named the Computer Center 
in his honor. Spriestersbach devotes a chapter in his 
expansive recollections [125] that expresses a central 
administration perspective on the development of computing 
at the University of Iowa and gives total credit to Dr. Weeg for 
his insight, inspiration, planning and leadership. Also Dr. 
Weeg was recognized for his many wide-ranging 
accomplishments by inclusion in J. A. N. Lee’s list of 
“computer pioneers” for the IEEE Computer Society [97]. 
 

Programming Language Proliferation 
FORTRAN, ALGOL and assembly language, plus COBOL, 
dominated the programming landscape in the U.S. throughout 
the 1960s. At the University of Iowa the FORTRAN language 
was used in programming classes starting in the early 1960s, 
and it continued to be used in the first programming course 
until 1976. However, by the mid-1960s a number of other 
languages had begun to appear – e.g., APL, Basic, SNOBOL, 
and several variations of ALGOL. In fact, a widely referenced 
“Tower of Babel” cover on the Communications of the ACM in 
January 1961 listed over 70 languages in common use, and 
emphatically reflected a rising concern over the language 
proliferation phenomenon.  
 
In the mid-1960s in response to this programming language 
proliferation, IBM mounted an effort to unify the language 
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diversity that continued to expand by developing a broad-
spectrum language that incorporated features from 
FORTRAN, ALGOL, COBOL and other languages. The goal 
was to provide a single language suitable for both scientific 
and business applications as well as system programming. A 
team composed of IBM staff members plus members of the 
IBM user group SHARE carried out the initial design of the 
language, and it was initially called NPL [117]. Due to a 
conflict with a prior use of this name, this language was soon 
renamed as PL/I. 
 
PL/I freely adapted features from the languages indicated 
above and integrated them in a coherent way. But it was 
innovative in expanding with features not available in its 
predecessors. It provided three classes of storage allocation 
– static, automatic (stack-based), and programmer controlled 
(heap-based). It also included exception handling features 
and rudimentary multitasking. It included string handling, 
pointers and complex numbers. Extensive defaulting 
conventions were included and all of its large set of keywords 
were also available as program identifiers. These features 
greatly complicated the task for compiler writers. In his Turing 
Award presentation [78] Hoare, who participated in the PL/I 
design process, recalls his dissatisfaction with the ambition of 
both the design process and its results. He speaks of 
unsuccessfully urging the elimination of features viewed as 
“dangerous” and expresses the judgment that PL/I was a 
“technically unsound project”. The PL/I project represented an 
inflection point in programming language design and evoked 
the misgivings of some. 
 
IBM developed an implementation of PL/I (released in 1966) 
for its machines and the language was quite successful in 
that context. As the language’s popularity spread, it began to 
be adopted for teaching by a growing number of American 
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universities. However, in those days both the typical mode of 
computing (“batch processing”) and the size and poor 
efficiency of the IBM PL/I compiler made it impractical for 
large classes. This led Cornell University to develop (on IBM 
computers) an efficient in-core compiler system PL/C [108] 
suited for this purpose. In 1970 the beginning programming 
course at the University of Iowa was expanded into a two 
course sequence. The first course continued to be taught with 
FORTRAN, but with the support of the PL/C system, the 
second course in the sequence used PL/I. Later in 1976 the 
first course of our beginning sequence also began using PL/I.  
 
In the fall of 1969 a Conversational Programming System 
(CPS [83] – an IBM “type III” unsupported program) became 
available. Despite its status, CPS provided an ambitious, 
high-quality interactive system implementing the PL/I 
language. As an interpreter, CPS offered incremental 
compilation and accepted program fragments with immediate 
execution feedback. Unfortunately, resources (e.g., terminals 
and processing capacity) were only sufficient to allow 
Computer Science faculty early access to this system. It was 
immediately obvious that this interactive paradigm would 
provide an enormous advantage for program development. 
Interactive access for general faculty access and class 
instruction would come significantly later.  

 
Development of implementations of PL/I by other computer 
manufacturers was problematic, and by 1980 interest in the 
language had declined substantially. While PL/I did not 
achieve its motivating purpose (language proliferation 
subsequently accelerated rather than declining), it had a 
significant impact on programming language ideas, goals and 
ambitions. The successful implementation of this language 
encouraged subsequent language designers to elevate 
linguistic matters and reduce the emphasis on efficiency 
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when considering language goals. This influence has led to 
noteworthy contributions to the development of programming 
languages, of course, all made feasible by amazing increases 
in machine capacity. 
 
In the latter half of the 1960s another language attracted a 
good deal of my attention. This was the language EULER, 
introduced in two papers published by Niklaus Wirth and 
Helmut Weber in 1966 [144]. This language was a derivative 
of ALGOL 60 and provided generalizations of some features, 
although it abandoned static typing. Its primary attraction to 
me was the inclusion of a complete formal (and machine 
independent) definition of both the syntax and semantics. 
BNF provided the standard means of accurately describing 
programming language syntax, but was not directly useful to 
describe semantics. Wirth & Weber developed a formal 
means of precisely describing semantics and used EULER as 
their case study demonstration. They attached the generation 
of code for a virtual, list-oriented machine to the parsing 
process for a restricted type of grammar. Each production of 
the grammar for EULER was attached to a code fragment 
that described an execution effect. As the parsing process 
identified the occurrence of a production, it also generated the 
corresponding code. This research was an elaborate 
harbinger of Knuth’s attribute grammars [93] although it 
avoided the construction of a derivation tree by direct 
augmentation of the parse procedure, and thereby could only 
operate with what are known as “synthesized attributes” in 
attribute grammars. However, this was sufficient for a 
comprehensive semantic description, and demonstrated how 
to avoid later clarifications like that necessary for ALGOL 60. 
 
For several years, I used EULER and its associated formal 
description in a graduate course on programming language 
foundations. It provided a superb illustration of the complete 
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formal description of a language. The language description 
included detailed operational development for parsing, code 
generation, virtual machine and interpreter, providing a model 
suitable for creating an implementation of EULER. This was 
done under my oversight at the University of Iowa (and by 
others at other universities), allowing experimentation with 
some relatively intricate EULER programs. The EULER 
description exposed the complication and subtlety that derive 
from ALGOL’s block structure scope rules, call-by-name 
parameter transmission, procedures as arguments, etc. I 
gained much better insight into these issues by augmenting 
the study and use of the EULER description with that 
implementation effort, and I believe it was a fruitful 
educational tool. While there were a number of efforts at 
connecting formal specification of language syntax and 
semantics with implementation, I regarded the EULER project 
as a model of conciseness and completeness. 
 
Although in the early 1970s, the first programming course at 
the University of Iowa still taught FORTRAN, a new wave of 
language change was on the horizon. Two programming 
languages appeared that were destined to have a profound 
effect on computer programming. These languages were C 
and Pascal. However, I did not seriously pursue either of 
these languages initially and so I’ll defer any comments 
relating to them until a bit later. Instead, I became interested 
in a language that embodied a distinctly different paradigm – 
SNOBOL – and this is the direction I pursue next. 
 

Advancing the Theory of Programming Languages 
As briefly alluded to earlier, in the early 1960s a variety of 
formalisms for language description began to appear that 
would have profound effects on the design and 
implementation of programming languages and systems. The 
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regular expression concept from automata theory had already 
undergone substantial theoretical investigation, and had 
obvious potential for practical application. The use of BNF to 
describe ALGOL 60 instantly established it as a mainstay for 
programming language syntax. The Chomsky hierarchy of 
grammars and languages devised for the analysis of natural 
languages had immediate relevance to programming 
languages. And lastly, the development of the programming 
language SNOBOL provided a cogent practical alternative for 
describing collections of strings. 
 
Regular expressions first made their way into text editors and 
operating systems [127] and evolved into a substantially more 
expressive mechanism than the theoretical expressions that 
Kleene [91] had devised. This mechanism together with 
common extensions has no universally accepted name, but is 
often referred to as extended regular expressions and that is 
the term I will use in this document. Consequently, the well-
developed theory of regular expressions from automata 
research has limited applicability to the extended regular 
expressions that have come to be part of numerous 
programming systems. These enhanced mechanisms are a 
key component in a long list of modern programming 
languages, editors and systems [60]. 
 
Chomsky’s work on grammars [24] provided a rigorous 
framework for formal language research and this blossomed 
into an active research area. I followed the theoretical side of 
the research on formal grammars diligently as it progressed. 
One of the grammars in the Chomsky hierarchy, the context-
free (or type 2) grammar turned out to be a direct match with 
BNF, and its formal basis applied immediately to languages 
described by BNF. As a result, a variety of theoretical 
properties, plus ideas of direct practical use such as syntax 
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trees and parsing methods were soon being adapted to 
programming languages (see e.g. [58]). 
 
At the heart of the SNOBOL language [35] was a construct 
known as a “pattern” that manifested a distinct alternative to 
describing and processing strings. The SNOBOL pattern 
concept anticipated the enhancements to regular expressions 
that would make them so practically useful, and included 
several more features of significant practical value. The aim 
of SNOBOL was practical rather than theoretical, and 
practical programming ideas preceded any theory. But it was 
a relationship with other theoretical investigations I’ve noted 
that drew my interest, and I’ll discuss these connections next.  
 
SNOBOL was begun in 1962 by a group at Bell Telephone 
Laboratories led by David Farber. It went through a sequence 
of versions [70] before a widely available implementation of 
SNOBOL4 [68] became available for the IBM 360 System in 
1968 when it attracted my serious attention. SNOBOL4 was 
intended to facilitate string processing, and provided a 
drastically different programming paradigm. The central 
feature of the language was the string pattern and the closely 
associated pattern matching process. By providing access, 
processing, and reuse of substrings encountered during the 
matching process, SNOBOL enabled succinct and flexible 
string processing in a way not found in any other language. 
Moreover, SNOBOL provided a clean and intuitive syntax, 
and embedded it in a success-failure control structure with 
automatic backtracking that was very natural to this 
processing paradigm. The emphasis on string processing did 
not lead to the exclusion of basic features of a general-
purpose language. SNOBOL4 included integer and floating 
point arithmetic, arrays, tables, and programmer defined data 
types. By 1970 I was using SNOBOL4 in an upper-level 
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undergraduate course on concepts in programming 
languages. 
 
The semantics of SNOBOL4 patterns were intimately 
connected to the matching process, and the success or 
failure of matching guided the flow of control with automatic 
backtracking in the matching process. The matching process 
was described in an entirely operational way [69] by an 
elaborate description of the scanning process and how each 
pattern element moved a cursor through a subject string. This 
included pattern elements that stored a partially matched 
substring in a program variable for later use (in the same 
pattern). Nonetheless, this paradigm had the potential for a 
much more declarative view. A basic aspect of a SNOBOL4 
pattern was that it constituted the description of a collection of 
strings. It seemed of eminent value to me to gain insight into 
the limits of the kind of collection that might be describable 
through various types of pattern elements, and this motivated 
me to develop a formalism suitable for theoretical study of the 
pattern concept. 
 
In 1971 I published a paper [42] that began with a 
formalization of the linked-list concept familiar from IPL-V. 
Using this formalism I showed that one natural view of the 
sequencing of the elements appearing in a list structure was 
captured by the language of a context-free grammar whose 
structure is effectively isomorphic to that of the list structure. 
This formalism was then extended to capture SNOBOL4 
patterns that include embedded defined functions and their 
application to matched (sub)strings. With this extended 
model, and using only finite-state string mappings for 
embedded functions, another result showed that any 
recursively enumerable language could be described. I found 
such theoretical insights to be of considerable practical value 
in programming problems involving pattern design, both 
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through better general understanding and in the identification 
of pattern elements to be employed. This line of investigation 
of declarative semantics of patterns became a long-range 
research topic for me and resulted in several more papers in 
subsequent years [47, 100, 49]. In passing, I note that not 
until recent years has analogous theoretical investigation of 
extended regular expressions been seriously pursued (e.g., 
[22, 1, 59]). 
 

Evolution of Types and Control Structures 
Niklaus Wirth had joined the IFIP Working Group to define a 
successor to ALGOL in 1964. He eventually submitted one of 
two proposals to the group, but the competing proposal was 
selected. Wirth’s proposal had included Hoare’s suggestion 
[75] for dynamic records as an ALGOL extension. After the 
rejection by the IFIP Working Group, Wirth and Hoare 
independently pursued this proposal and produced a 
language that became known as ALGOL W [145]. This 
language was only implemented on IBM 360/370 computers, 
but I did briefly use it in our advanced undergraduate 
concepts course. ALGOL W was interesting for its 
development of types. The original FORTRAN [82] did not 
have types – it distinguished only fixed point and floating point 
values and variables. ALGOL 60 did incorporate a type 
concept, but was nearly as limited with only ‘integer’, ‘real’, 
and ‘Boolean’ declaration of variables. The ALGOL W 
proposal expanded the basic types of ALGOL 60 with 
‘complex’, ‘bit’, ‘string’, and ‘reference’ types, and added a 
dynamic structured record type intended to accommodate list-
structure programming provided earlier by languages such as 
IPL-V. ALGOL W therefore provided a significant advance in 
giving type concepts a central role in programming 
languages, providing a preview for what we next see in 
Pascal. 
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By the latter half of the 1960s a movement to “structured 
programming” was beginning to gain broad support (e.g., [17, 
31, 32]). Concern over unrestrained structural organization of 
programs [31] led to the use of single-entry/single-exit control 
features as a primary ingredient of this methodology. Pascal 
was the creation of Niklaus Wirth [146] and was first 
announced in a 1970 technical report. The Pascal language 
provided strong support for structured programming with a 
simplified ALGOL 60 for-statement, and added while-
statements, repeat-statements, and case-statements. Also 
Pascal expanded the steps taken by ALGOL W on the role of 
types. The reference type (changed to ‘pointer’) was given 
broad applicability, ordinal and ‘char’ types were included as 
simple types, enumerated and subrange types were added as 
was a new set type. And Pascal added a means for 
programmer-defined types. Pascal required type declarations 
for all program entities, and continued the strong static typing 
philosophy in compilation to enhance efficiency and prevent 
an operation or procedure being inadvertently applied to 
unintended data. 
 
The diverse combination of control and data structures made 
Pascal an attractive language for a wide variety of 
applications. None-the-less it was rather slow to attract 
adoption in the U.S. In the U.S., one factor was overcoming a 
large base of established software available for commercial 
languages. Another factor was that the initial compiler created 
by Wirth was for CDC computers that were not that common 
in U.S. industry. The most significant influence for the 
success of Pascal was the availability of a free and easily 
portable implementation known as the P-code compiler [113]. 
Following the strategy used with EULER, a virtual computer 
was devised with an associated Pascal compiler so that all 
that was required for a Pascal implementation on another 
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computer was writing a P-code interpreter. While this led to 
slow execution times that impaired industrial adoptions, it did 
not significantly deter an academic enterprise, and a free 
implementation plus the language’s attractive features were 
irresistible in that arena. 
 
As its popularity spread and implementations proliferated, the 
call for a standard for Pascal gained much support. One 
central feature of ALGOL 60 and its descendants, including 
Pascal, is the idea of block structure and its use as the 
natural scoping unit. A colleague and I had noticed that as the 
variety of kinds of elements in Pascal had grown and 
interactions abounded, not all the language rules honored the 
scoping role of block structure. We believed it would be easy 
to implement a resolution of the offending cases we had 
observed, and made a contribution to the standards 
discussion [9, 10].  
 
The totality of types in Pascal had become quite diverse with 
enumeration and subrange types, arrays that may be ‘packed’ 
or not, variant and normal records, a new set type, plus an 
added means for the programmer to define types. Throughout 
its literature (e.g., the Pascal “bible” [86]), the phrase “same 
type” is used with no elaboration when expressing strong 
typing requirements, and while the standard [2] gave greater 
care in describing “type compatibility”, the “same type” phrase 
was carried forward in numerous places. The purpose of 
strong static typing serves efficiency of implementation. But 
just as well it avoids errors of applying inappropriate 
operations to data values as early as possible, and this is an 
essential characteristic of Pascal typing. I remained with 
concern that “correct” typing so at the heart of the language 
might be left with possible room for interpretation. For 
instance, with the declarations shown in Figure 5, could it be 
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that variables A an B have the “same type” while variables C 
and D do not?  
 

var A: array[1..2] of integer; 
var B: array[1..2] of integer; 
var C: record x,y: integer end; 
var D: record x,y: integer end; 

Figure 5: Pascal declarations 
 
Later, I pursued an alternative to type equivalence in Pascal. 
In mathematics when two things are equivalent (i.e., “the 
same”) there are basic expectations for this relationship and it 
seems those properties should apply for Pascal types as well. 
Thinking about type equivalence led me to an idea for a 
somewhat more flexible approach that would still be 
straightforward to implement. My approach correlated with a 
natural “subtype” idea, and I developed precise definitions 
and an associated type checking algorithm in [50]. 
 
Two important design goals for Pascal [147] had been to 
serve as a sound language for teaching, including teaching 
system programming, and to achieve a high level of efficiency 
for both the compiler and compiled programs. As the success 
and longevity of the language clearly establishes, these goals 
were not only attained but exceeded. In 1982 Pascal became 
the language used in the beginning two-course sequence in 
programming at the University of Iowa, and it remained in that 
role for more than a decade! And Pascal was the 
programming language of choice at the beginning of Knuth’s 
campaign for literate programming [94]. In 1984 Niklaus Wirth 
received the ACM Turing Award for his contributions to 
programming language development. 
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Distinctive Language Alternatives 
Languages that adopt an unorthodox perspective on 
computing have often held an attraction for me. Of course, 
just getting off the beaten path isn’t necessarily an 
accomplishment. But internalizing a truly different approach 
does open avenues to new thinking. When facing an 
unfamiliar programming task, having diverse options 
enhances finding good choices. SNOBOL is one such 
language that I have already discussed. In this section I 
discuss several others that have expanded my computing 
perspective. 
 
Kenneth Iverson developed a “programming notation” he 
called APL while teaching in a graduate automatic data 
processing program at Harvard in the latter half of the 1950s. 
His notation was heavily based on mathematics and matrices, 
intended as “a tool for communication and exposition” of 
algorithms [34], and motivated by dissatisfaction with then 
current programming notations. In its early years, APL was 
used as a means to communicate between individuals rather 
than as a computer programming language and this was 
immediately apparent in its appearance. Although I did not 
pursue APL until much later, the first widely available 
documentation was published as the book “A Programming 
Language” in 1962 [85]. As a brief illustrative example that 
distinguishes it from a programming language, one statement 
appearing in the APL book (p. 44) is shown in Figure 6. 
 

 
Figure 6: an APL assignment statement 

 
The APL language has at its heart the array data structure 
with no restrictions on dimensionality. It has operations to 
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conveniently construct arrays, to adjust the number and range 
of dimensions, and many array-oriented operations. And the 
basic scalar operations have their definitions extended to 
apply equally well to arrays of any dimension. For instance, 
for two linear arrays x = (x1, x2, … , xk) and y = (y1, y2, … , yk), 
the expression x+y yields the array of element-wise sums. In 
a conventional language one would need to introduce an 
index variable and write a loop with a suitable termination test 
to describe the same computation. APL programs through 
this and numerous other conventions are both remarkably 
more succinct yet still improve clarity. Iverson describes the 
name APL as an acronym for “A Programming Language”, 
but when I think about its profusion of array facilities, it’s Array 
Programming Language. 
 
Iverson joined IBM in 1960 where he initially collaborated on 
using his language as a means to describe computer 
hardware. It was not until the mid-1960s that serious effort 
began on developing a computer implementation of APL. This 
was challenging for several reasons. The first problem was 
that APL used a variety of math symbols, Greek symbols, 
special marks, and 2-dimensional spacing. Resolving this 
involved the development of a new terminal based on the IBM 
Selectric typewriter, plus a specially designed APL type-ball 
that provided a tailored 88 character alphabet with many of 
the unique APL characters (but only upper-case letters). Even 
so the implementation would still require an overstrike 
procedure for some operations. And with all that, the 
“linearization” of the notation required language adjustments. 
But despite these changes, the implementation preserved the 
original sense of the language quite well. In 1968 IBM 
released a version of APL for its System 360 series of 
computers [33], and it was with this interactive system that I 
become familiar with APL. 
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The often mentioned “one-liner” phenomenon of APL is a 
topic that gets us directly to the quintessence of the language. 
This is an informally defined term that refers to the 
composition of a selection from the profusion of APL 
operators to form an expression that accomplishes a non-
trivial computation. I’ll illustrate what’s meant with a single but 
informative example – computing the prime numbers less 
than a given bound. This is a common exercise in many 
languages. It is one I first did on the IBM 650 (but not this 
way), and I was intrigued to see there is a published history of 
this programming problem [21]. Imagine this program for a 
moment as written in your favorite language. The point is that 
this is one line of APL code shown in Figure 7. I present it 
here for an insight into APL, and as another instance of the 
distinct appearance of APL programs. 
 

 (~T∊T∘ .×T)/T←1↓⍳N 
Figure 7: APL primes program 

 
This is not the place for a detailed account of APL operators 
and syntax, but a short informal description of the primes 
program in Figure 7 does reveal the alternative view that APL 
fosters. Given integer N, this program (read right-to-left) first 
creates a vector of values 2 through N, from that it creates the 
2-dimentional matrix of all products from this vector, then it 
next selects occurrences in the original vector of integers that 
appear in this matrix (these must therefore be those values 
which are products), and finally inverts that selection to obtain 
the list of primes! So, no (explicit) loops, tests, etc.; no 
quotients and tests of remainders, just the creation of arrays, 
multiplications and selections (each by a single operation), 
and the correctness is self-evident! This program is a precise 
computational description of the primes and conveys the 
sense of APL’s earlier use for communication between 
individuals. Of course, this program clearly overlooks 
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consideration of both processor and storage efficiency, a 
common criticism of APL. 
 
In 1979, Iverson received the ACM Turing award for his 
genuinely innovative ideas in programming. But he had a 
noteworthy encore that deserves greater recognition than it 
has received. This requires a brief chronological fast forward, 
but it best fits here. In 1989, Iverson collaborated with Roger 
Hui in the development of a language for an ASCII-based 
descendent of APL known as J [80]. The special characters 
for operators were replaced by a systematic and well-
conceived pairing of ASCII characters, and intrinsic APL 
facilities were carried forward into J. But in addition to 
selecting a syntactic translation for APL, the language 
evolved in significant ways. The APL idea of array shape was 
generalized in J, and the idea of array rank was extended to 
functions, providing numerous opportunities for both 
generalizing and simplifying array operations. Although APL 
was not a functional language, it had a substantial functional 
core and in J this functional subset is expanded and 
emphasized. And free implementations of J are available for 
all the common platforms [88]. I have been fascinated to find 
an implementation available for my smart phone, where J’s 
continued propensity for “one-liners” is a perfect match for the 
small screen. 
 
In the mid-1970s the idea of “abstract data types” (ADTs) 
attracted growing attention. Actually this term was used to 
describe two related but quite distinct ideas. The first was 
concerned with programming language facilities to allow 
users to code “first class” data types that have equal footing 
with those native to a language (e.g., [98, 87, 148]). This was 
quickly followed by an alternative idea for the development of 
methodology for specification of the behavior of a data type 
(e.g., [99, 65, 72]). Specification efforts were concerned with 
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program proving [76, 77], and with precise descriptions of 
new data types suitable for that purpose while remaining 
devoid of implementation assumptions. The term algebraic 
abstract data type (algebraic ADT) was used for these ideas 
and this became a central approach for specification, and this 
area expanded rapidly in the latter part of the 1970s. I found it 
remarkable that without choosing a representation for data 
nor providing implementations for the operations, a manifest 
description of essential properties was still attainable. The 
algebraic ADT requires only names for relevant type domains, 
operation names (i.e., for functions with no side-effects) 
involved along with their type characteristic, and equational 
axioms for operation outcomes.  
 
To augment this vague algebraic ADT outline, a token version 
of the standard example of the pushdown stack appears in 
Figure 8. Note that the specification expresses terms that 
describe each Stack, and it allows the essential last-in-first-
out behavior of operations on a Stack to be deduced from the 
equations (for brevity we ignore the issue of top(new)).  
 

Domains: Stack and Item (not otherwise elaborated) 
Operations: 
  new: Stack   – result (a constant) is an empty Stack 
  push: Stack × Item → Stack – result Item added to top 
  pop: Stack → Stack   – result has top item removed 
  top: Stack → Item   – result is the top Item 
Axioms (for all s∈Stack and i∈Item): 
  pop(push(s,i)) = s 
  top(push(s,i)) = i 

Figure 8: Pushdown stack algebraic ADT 
 
As a specification device, algebraic ADTs proved to be 
remarkably effective for a vast variety of data type 
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descriptions. This is another instance of a device that while 
not a programming language, has such a close connection 
that it is appropriate to include in the discussion. The adoption 
of algebraic ADTs for specifications soon led to another 
problem. For more complex examples, the creation of the 
algebraic specification is itself a challenging technical task. 
While a suitable specification provides a beneficial means to 
gauge the correctness of code, an erroneous specification 
can have the doubly harmful effect of leading to incorrect 
code but believing it correct. Just as we need to debug code 
by running it, it was soon found that computer aids were 
needed to discover unintended faults in specifications. Hence 
several projects to develop systems to automate the 
verification of an algebraic ADT specification arose (e.g., 
[114, 73, 66]). These systems provided execution behavior 
given only the algebraic ADT and further blurred the line with 
programming languages. While such tailored systems have 
some clear advantages, I observed that a widely available 
programming system, SNOBOL4, already provided support 
directly applicable to this task. I wrote a paper [48] that 
developed the incorporation of ADT equations as SNOBOL4 
code that allowed for testing of a specification, and included 
suggestions for dealing with some subtle issues that can 
arise in certain situations.  
 
Through their clustering of a set of operations in direct 
proximity to their data, abstract data type ideas (both facets) 
were a factor in the development of object-oriented (O-O) 
programming. But the first language with objected-oriented 
features, SIMULA [27], had anticipated this view by the mid-
1960s. This language was devised to enhance ALGOL 60 
with facilities to aid in the creation of simulation programs. It 
was quickly recognized that those ideas were of much more 
general use, and the next step was SIMULA 67 [28] which 
provided objects, classes and subclasses, and inheritance 
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similar to those found in many O-O languages we see today. 
And the relation of SIMULA 67 to specification and proving 
ideas was soon developed by Hoare [77] with a continuation 
of his earlier program proving work. Although I had followed 
ALGOL 60 closely, I never did pursue programming in 
SIMULA. In 2001 Ole-Johan Dahl and Kristen Nygaard 
received the ACM Turing Award for their original development 
of object-oriented programming. 
 
My first encounter with O-O programming was Smalltalk-80 
[67]. Work on Smalltalk began in the early 1970s and it went 
through several versions. In his discussion of the history of 
Smalltalk, Alan Kay [90] relates a wide range of factors 
influencing its development. Kay mentions the Sketchpad 
system [126], ALGOL and EULER, and work on porting an 
implementation of SIMULA. But the other factors he includes 
range to the broader topics of a changing computing 
environment with personal handheld computers, high-
resolution displays, and windows based systems. There are 
certainly a wide array of technical and social factors that have 
made O-O programming so prominent, and fostered the 
explosive development of new O-O languages that has 
persisted ever since. 
 
In the Smalltalk-80 description [67] the authors write that 
“Smalltalk is based on a small number of concepts”, but I 
have to disagree. They base their contention on a list of five 
key words in the Smalltalk vocabulary: object, message, 
class, instance, and method. In fact, each of those words 
itself embraces a number of concepts. The word “object” 
involves concepts of data storage, operations upon that data 
and associated clustering, and some objects involve such 
ideas as the file system. The word “message” involves 
concepts of activation, of expression, and communication 
through concepts of argument and transmission of 
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arguments, etc. The authors themselves essentially concede 
that the claim is an exaggeration when they write: “These five 
words are defined in terms of each other, so it is almost as 
though the reader must know everything before knowing 
anything”. But as the strategy for organizing all those ideas, 
the unwavering adherence to the object-oriented 
methodology reflected in their five words does indeed lead to 
a remarkably homogenous and coherent result. Another 
consequence is a simple, easy to learn syntax. The last 
component is a class library that provides well-conceived 
organization. Where program libraries in conventional 
languages are adjuncts of occasional use, the class library is 
integral to Smalltalk. The class library also encapsulates the 
primary source of complexity in the system and so allows 
much of that to be internalized gradually. In 2003 Alan Kay 
received the ACM Turing Award for his work on the 
development of Smalltalk. 
 
My experience with Smalltalk-80 was mostly in its use as a 
teaching system. I began using it in an advanced 
undergraduate course on programming language concepts in 
the latter-1980s. The initial Smalltalk-80 implementations 
were only available for interactive platforms with high-
resolution graphics, and these machines were not feasible in 
our classroom setting at the time. The system I initially used 
was Little Smalltalk developed by Timothy Budd [20] who in 
facing a similar circumstance, created an implementation for 
Unix3-based systems that was freely distributed. This system 
made concessions to run on text terminals, but the essential 
sense of the language was still evident.  
 
Much later I published a paper [54] that presented a means to 
enhance algebraic ADTs to provide specifications for object 

																																																								
3 Unix is a registered trademark of The Open Group 
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classes. In their usual role, algebraic ADTs model collections 
of functions – there’s no shared state or side-effects. My idea 
retained the equational character, and based the specification 
on sequences of messages rather than individual messages. 
This captured the shared store at the same level of 
abstraction as functions, and provided modeling for a 
changing store without a prescribed configuration of instance 
variables, just behavior of methods. The paper illustrates that 
a specification given in this way can be used for the 
verification of varied implementations and storage 
configurations, using Smalltalk as the programming language. 
 

Declarative Languages 
The “declarative” adjective could be applied to numerous 
languages these days. I won’t pursue a careful definition, but 
for me the key issue is the focus on results, and the key 
feature is variables as they’re known in mathematics not 
conventional programming languages. The declarative 
languages emphasize results over process, and have 
commonalities with program specification such as the 
algebraic ADT I’ve already mentioned. In this section I 
discuss three programming languages I’ve had occasion to 
consider previously in a case study comparison [52]. 
 
Functional programs in the form of lambda expressions [25] 
were already there at the dawn of the theoretical foundation 
of computer science, preceding computer programming. Later 
LISP [104] was an early version of (impure) functional 
programming with a version of lambda expressions. While 
conceptually interesting to me, I found LISP syntactically 
unattractive and never became motivated to pursue it 
seriously. As functional programming evolved, it remained a 
programming niche for me that I never quite made time for. A 
strong interest in functional programming did not develop for 
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me until reading John Backus’ Turing award paper in 1978 
[7]. I found his rationale and motivation for functional 
programming very persuasive. And the algebraic flavor of his 
FP language resonated with my earlier mathematics 
background. The direct application of algebraic analysis to 
reason about and transform these programs was striking. 
Both the conciseness and the reusability characteristics of 
functions in this setting were highly attractive. And it was 
remarkable that his advocacy for functional programming was 
combined with a strong condemnation of traditional 
languages for their defects, especially since the award was 
given for his fundamental work on these earlier languages. 
 
For some time I followed FP related literature. I developed a 
local implementation of FP suitable for experimentation, and 
employed it for several years in an advanced undergraduate 
class on programming concepts. My interest continued to 
develop as I explored the contrasts in this paradigm. I found 
the computations that could be expressed using FP’s ‘insert’ 
operations to accomplish looping (with no explicit iteration or 
recursion) quite remarkable. Backus and his colleagues had 
noted this in their writing, but it seemed of even greater 
significance to me. This was the same operation known as 
reduction in APL, and the FP insert-based programs were 
reminiscent of APL one-liners. These FP programs employ 
conditionals and insert, but avoid explicit loops and recursion. 
This gives them a “tree structure” with linear execution along 
each path, and they embody a certain essence of FP 
programming. Eventually I published a paper [51] that 
provided a theoretical basis that identifies the computational 
expressiveness of these “insert-based” programs, showing 
that every primitive recursive function (e.g., see [29]) could be 
programmed in this way. This is an extensive class of total 
functions that in its day was regarded in theoretical literature 
as including much of practical computing, and whose program 
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counterparts are guaranteed to always halt. My interest in 
functional programming was significantly heightened the 
following year (1987) when I attended the Institute of 
Declarative Programming at the University of Texas (Austin), 
one of the University of Texas Year of Programming series. I 
was motivated to hear John Backus speaking about recent 
work by his group in functional programming [8]. But what 
actually most caught my attention in his talk were his highly 
complementary comments about David Turner’s work in 
functional programming.  
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David Turner had developed a series of three functional 
languages, plus devising a novel implementation technique 
for functional programming [132]. I subsequently focused on 
Turner’s most recent language, Miranda4 [133]. This was a 
pure functional language but with extensive supporting 
features. I was impressed by the conceptual foundation for 
Miranda where a program consists of defined functions and 
data, applying functions to arguments, and that’s it. Both 
arguments and results of functions can themselves be 
functions. And the syntax was elegant, providing pattern 
matching for clean integration of multi-case definitions, “off-
sides” rules for flexible but clear multi-line definitions, etc. 
Miranda also includes the ‘insert’ operation of FP (or 
reduction of APL), called ‘fold’ (two versions actually), 
providing the means of functional programming that I found 
so fascinating in FP. Miranda included a strong yet flexible 
static type system, an attribute I believe contributes 
significantly to avoiding errors in programs, and one that FP 
sidestepped. However, Miranda maintains an ease of use by 
not requiring type declarations but leaving the implementation 
to perform type inference (another application of the 
unification algorithm) to determine types. Also included were 
facilities for both abstract and algebraic data type definitions. I 
found it intriguing to see ALGOL 60’s idea of “call-by-name” 
parameter transmission carried to logical conclusion in every 
feature of Miranda via “lazy evaluation”. I was further 
impressed by a simple and practical comment convention that 
provided an effective means to capture the spirit of literate 
programming right in the language. 
 
In conclusion for Miranda, I’ll (re)consider the prime number 
program that was presented earlier as an APL example 

																																																								
4 Miranda is a trademark of Research Software Ltd. 
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(Figure 7). If we follow the method used in APL, a Miranda 
version is the function definition shown in Figure 10. 
 

primesTo n = [p | p <- [2..n]; ~member prds p] 
                      where prds = [q*r | q,r <- [2..n]] 

Figure 10: Miranda primes program 
 
Miranda is not as succinct as APL as it lacks such a breadth 
of pre-defined operators. But this program still replaces 
explicit loops with a pre-defined list comprehension operation 
and list membership predicate, and retains the appearance 
(and clarity) of straight-line code (a “two-liner”). The 
correctness is as self-evident as for the APL code (more so 
I’d say), but it’s the same method so the efficiency issues 
remain. The clarity and coherence of Miranda is remarkable. I 
regard it as the best language design I have encountered and 
still enjoy programming with it. I note in passing that a 
Miranda program was used in the case study paper 
mentioned at the beginning of this section, and in 1989 the 
execution of that program took 50 minutes on our 
departmental (Digital Equipment Corp.) VAX-11/780 and now 
takes less than one second on my personal iMac. 
 
This brings me to the last language I will discuss. Prolog was 
initially devised in 1972-73 in a cooperative effort led by Alain 
Colmerauer and Philippe Roussel [26] with a primary 
motivation of natural language processing. A more mature 
version with broader goals began wider distribution in the 
mid-1970s. However, I remained only vaguely aware of the 
area for the next decade. In 1965 (John) Alan Robinson had 
published the celebrated unification algorithm and resolution 
principle [120]. This was a major advance in automatic 
theorem proving, and provided a basis for the creation of the 
Prolog programming language and the initiation of logic 
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programming generally. Alan Robinson became the founding 
editor of the Journal of Logic Programming in 1984. In 1985 
he spent a week visiting in our department and lecturing on 
logic programming (esp. Prolog). Alan was very generous 
with his time throughout his visit, and an entirely gracious 
guest. His presentations were inspiring, and his visit was 
directly responsible for the development of a long-term 
interest in logic programming by myself and several 
colleagues and graduate students.  
 
Prolog’s basis in logic and subsequent selection of 
computational elements as relations rather than functions was 
a generalization with a persuasive potential to enhance 
expressiveness. One program can provide the computations 
of several programs in conventional (or functional) languages. 
Prolog’s reliance on deduction holds the promise of “smarter” 
programs. And I found Prolog’s backtrack search strategy 
reminiscent of the SNOBOL pattern match procedure, and it 
therefore felt like meeting an old friend. So I was quickly won 
over to this language. Subsequently several faculty and 
graduate students began a regular seminar on logic 
programming where we read a wide range of the available 
literature. Before long logic programming became one of the 
topics in our advanced undergraduate course on 
programming language concepts. I recently found it 
interesting to note a comment by Alan Kay in his history of 
Smalltalk [90]: “It is a pity that we did not know about 
PROLOG then or vice-versa; the combinations of the two 
languages done subsequently are quite intriguing”. 
 
Somewhat later one of my Ph.D. students and I developed 
the use of logic programming as a means to enhance the 
attribute grammar mechanism for semantic description of 
programming languages [121]. Rather than taking attributes 
as data values associated with derivation tree nodes and 
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describing them by functional semantic rules, we advocated 
using predicates as the attributes. Then the attributes become 
active rather than passive elements, and the semantic rules 
are clauses describing the properties of these predicates. 
This enhances expressiveness with the generality of 
relational programming, and logic variables provide 
bidirectional communication that allows tree traversal 
(synthesized vs. inherited attributes) to be effectively 
transparent. Moreover, Prolog support for DCG grammars 
allows syntax rules to be explicitly and coherently embedded 
within this one formalism. 
 
In the latter part of my teaching career, I undertook the effort 
to use Prolog (with a strong emphasis on underlying logic) as 
the language in an “experimental” first programming course 
for incoming freshmen at the University of Iowa. While I was 
uncertain at the outset, this course proved to be a popular 
success with the students who took it. I taught the course for 
six years, and soon became convinced that this is a superior 
way for students to develop conceptual foundations prevalent 
in programming, and of value in a variety of languages that 
might be later pursued, while becoming familiar with a tool of 
lasting practical utility. I described the approach I took in [56]. 
I’ll end with one last note in passing. A Prolog program was 
also used in that case study paper mentioned at the 
beginning of this section, and in 1989 the execution of that 
program took 7 minutes on our departmental VAX-11/780 and 
now takes less than one second on my personal iMac, and a 
preferred version of that program which would only abort for 
lack of sufficient space on the VAX-11/780 now completes 
with no difficulty on my personal iMac. 
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Summary and Conclusions 
As my professional career progressed, my realization that 
programming languages are much more than just tools to 
express our preformed ideas continued to grow. As we 
internalize a programming language, its form and structure 
molds our thinking at that level of abstraction. Creating a 
program is a process that requires bridging from a higher-
level problem domain to a precise description about how a 
computation is to unfold within the conception of our adopted 
language. That intellectual process cannot avoid being 
shaped by the ideas embodied in the language used for its 
expression. Of course, we may conceive of a computational 
approach to solving a problem at an abstraction level apart 
from any programming language. But when it comes to 
getting a computer to carry out our approach, we will think of 
its solution all over again with our internalized knowledge of 
the organization and facilities provided by a chosen 
programming language providing the basis at every step. The 
thoughts underlying both construction and verification of our 
program can only occur to us by virtue of the structure, 
organization, and properties of the language that we have 
assimilated. So it is not just the expression of ideas, but also 
the very formation of our computational ideas for which we 
can thank our programming language. 
 
The evolution of programming languages has led to an 
increasing distance between the programmer and the details 
of a particular computer. While a universal Turing machine 
[131] may be sufficient for any computation, it is through more 
artful languages that we achieve “better” programs. As has 
been long realized, the metrics for “better” programs may be 
highly varied and so the proliferation of programming 
languages will surely continue. This is a phenomenon to be 
celebrated, as I foresee no limit to the progress that may be 
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achieved. However, it may be challenging to determine which 
of numerous new ideas are actually “better”. This is where I 
believe that solid knowledge of what has occurred in the past 
can improve our judgment. 
 
In conclusion, I summarize those languages whose learning 
had the most significant impact on my personal 
understanding and appreciation of programming languages. 
This leads me to highlight nine of the languages I have 
mentioned. Each of these languages illustrates that the use of 
the collection of elements it incorporates leads to a distinctive 
conception of the programming process. The experience with 
each of them had a predominant influence on my 
understanding, and I briefly mention my reasons for each 
selection. I believe that each of these languages warrants 
broad general recognition for its contributions to fundamental 
programming language ideas, and that such general 
recognition is of value to further progress. However, I express 
my selection of these nine languages based on the 
importance of their influence in my personal development: 
• FORTRAN: as the most successful early example to raise 

the level of abstraction far above that of the particular 
computer to carry out a computation, and encompassing a 
majority of features found in higher-level languages for 
years to come 

• ALGOL 60 and BNF: for the convincing presentation of a 
means to precisely describe a systematically coherent, 
general, and flexible syntax, for nested scoping constructs, 
and for embracing recursion 

• EULER: for demonstrating a methodology for a description 
of semantics of traditional languages that is both formal 
and practical, and for demonstrating the practical utility of 
highly restricted (i.e., precedence) grammars 
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• APL and its ASCII-based descendant J: for extensive 
development of an array-oriented language that provides a 
conceptually distinct paradigm for computing 

• SNOBOL4: for an alternative paradigm based on 
backtracking and success/failure control structures, text 
processing, and generalized regular expressions 

• Smalltalk-80: as an exemplary object-oriented language 
• FP: simplicity and power of functional programming, the vast 

extent of programs that can be written without either 
iteration or recursion, and the suitability of algebraic 
methods of reasoning about programs 

• Miranda: elegant functional programming, strong static 
polymorphic typing with type inference, and lazy evaluation 
used to great advantage in enhancing expressiveness 

• Prolog: versatility and practical expressiveness of logic 
programming and the relational paradigm, formal (i.e., 
DCG) grammars as a programming feature, great utility for 
prototyping, potential benefits as a first programming 
language. 
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