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Abstract

Resorting solely to concepts from classical computability theory, I provide mathematical
arguments to doubt — if not dismiss, on an objective basis — the Church-Turing Thesis.
Defending the thesis amounts to believing that “any process which could naturally be called
an effective procedure can be realized by a Turing machine” (Minsky, 1967). Specifically, I
present a natural modification of the “Turing machine” model of computation, called the
“Alternative Deterministic Machine” model (or ADM for short). The relevance of this new
model hinges on the following observation: Turing machines have a lower model fidelity
than ADM’s with regard to human (and electronic) computers. Both a Turing machine
and an ADM model a human computer who contributes to her research community by
publishing mathematical findings. But, in reality, humans publish in a piecemeal fashion,
rather than all in one go. Turing machines, as formally defined by Hopcroft & Ullman (1979),
do not capture this particular trait of human activity, while ADM’s do. To recapitulate in
technical terms: a Turing machine provides meaningful output (for the outside world to see)
instantly, after having halted, while an ADM provides meaningful output (to its environment)
incrementally, before possibly halting. This distinction will allow me to (i) prove that Turing
machines partially compute less functions on the naturals than ADM’s, and (ii) prescribe an
ADM-based method to generate a subset of the naturals that is not computably enumerable.
I shall furthermore discuss multiple ways to generalize the ADM model. This discussion will
lead to a new incentive, based on a mathematician-as-typewriter metaphor, to embrace even
more powerful models of computation — i.e., the so-called “eventually correct machines” in
the literature — as natural formalizations of algorithms.

*** The author can be contacted via email (egdaylight “at” dijkstrascry “dot” com) and via
postal mail (Karel Van Oudheusden, School of Media and Information, Siegen University,
Herrengarten 3, 57072 Siegen, Germany).
*** The present document is catalogued by the Belgian Association of Authors, Com-
posers and Publishers (www.sabam.be/en) and is a slightly modified version of an article
submitted for peer review in a computer science journal on December 4, 2018.

1 Basic Ideas

In 1952, Stephen Kleene wrote about Turing’s Thesis:

“What we must do is to convince ourselves that any acts a human computer could
carry out are analyzable into successions of atomic acts of some Turing machine.” [33,
p.377]

In the present article, I argue that there are relevant acts a human computer carries out which
are not captured by Turing machines: a human computer can show some of her preliminary, yet
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fixed, results (e.g., lemmas) to the outside world, while she is still deriving her major finding (e.g.,
a theorem). Another way to convey this basic idea is as follows:

Any prefix of the final output of an algorithm is useful to have as soon as possible.

Turing machines, as formally defined in textbooks today, do not capture this particular aspect of
algorithms.

The focus in the present paper lies on human computing, but, as an aside, it should also be
mentioned that several algorithms implemented in electronic computers provide definitive output
at various stages of computation, before possibly halting. An example is ordinary batch processing:
the first sheet containing printed output can already be used, while the follow-up output (of the
same batch) is still being processed. I will therefore introduce Alternative Deterministic Machines
(ADM’s) as a slight modification of Deterministic Turing Machines (DTM’s).

To be more precise, I will build on the following observation:

A deterministic Turing machine 𝑀 , in the modern sense of Kleene, models a math-
ematician who is computing a function on the naturals (i.e., the natural numbers)
from 𝑥 to 𝑓(𝑥). Machine 𝑀 works on string representations of naturals. Consider
some standard encoding function 𝑒𝑛𝑐 from naturals to strings of, say, binary digits.
Then we can say that Turing machine 𝑀 takes 𝑒𝑛𝑐(𝑥) as input and, if all goes well,
produces a finite output, i.e. the string 𝑒𝑛𝑐(𝑓(𝑥)). The crux is that a halting Turing
machine 𝑀 reveals its complete result, i.e. 𝑒𝑛𝑐(𝑓(𝑥)), all in one sweep. An Alternative
Deterministic Machine 𝑁 , by contrast, will, on input 𝑒𝑛𝑐(𝑥), provide the first bits of
𝑒𝑛𝑐(𝑓(𝑥)) for the outside world to see as soon as they have been computed.

In all other respects, an Alternative Deterministic Machine is merely a Deterministic Turing
Machine.1 Nevertheless, ADM’s will turn out to be computationally a bit stronger than DTM’s,
thereby apparently contradicting Turing’s Thesis2 and, by extension, Church’s Thesis: “Every
effectively calculable function (effectively decidable predicate) is general recursive” [33, p.300].
Indeed, Turing’s Thesis and Church’s Thesis are equivalent according to Kleene [33, p.376], and
I will use the umbrella phrase “the Church-Turing Thesis” to capture the core notion under
scrutiny in this paper.

The technical reason why ADM’s can partially compute more functions than Turing machines
is neither complicated, nor particularly novel. Consider, for instance, an ADM 𝑉 that can
simulate an arbitrary DTM 𝑀 on arbitrary input 𝑤. Before starting the simulation, 𝑉 prints the
symbol 0 on its output tape. On the one hand, if the simulation does not terminate, then 𝑉 has
printed nonempty output (i.e., symbol 0 and nothing more), which differs from 𝑀 ’s output (i.e.,
the empty string). On the other hand, if the simulation stops, then 𝑀 can print one more output
symbol (i.e., 0 or 1) such that its entire output differs from 𝑀 ’s output. The net result is that 𝑉
computes a function on the naturals that differs from every DTM-computable function.

Some experts (coming from outside of computer science proper) have orally expressed doubts
about my contradistinction between Turing machines and ADM’s. I now paraphrase their
concerns:

Why would “an ADM, providing meaningful output incrementally, before possibly
halting” lead to more computable functions than Turing machines? Can’t a Turing

1I explicitly use the adjective “deterministic” in “ADM” and in “DTM,” in anticipation of a later publication
about the contradistinction between deterministic and nondeterministic machines. All machines discussed in the
present article are deterministic and the reader can therefore safely ignore the adjective at all times.

2Note that I am not defending the claim that Turing, himself, endorsed what we today call “Turing’s thesis”
(cf. Jack Copeland et al. [14, Sec.5]), nor am I questioning that claim.
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machine reveal some of its output as it continues to compute? It is, after all, possible
to program Turing machines in a way that they have meaningful partial outputs
through a computation for certain problems.

My answer is two-fold. First, abiding by the formal setup of John Hopcroft & Jeffrey Ullman [32],
a Turing machine only provides output (to the outside world) after halting, not before. The same
remark holds for the writings of Kleene [33] and Martin Davis [16, 19]. Second, suppose that,
contrary to Hopcroft & Ullman (and other modern textbooks), we do tolerate a more liberal
connotation of a Turing machine; that is, we allow our liberal Turing machines to do precisely
what ADM’s do. Then, the results in the present paper will convey that liberal Turing machines
with one output tape (cf. ADM’s) are computationally inferior to liberal Turing machines with two
output tapes (cf. BDM’s), which, in turn, are inferior to liberal Turing machines with three output
tapes (cf. CDM’s). In other words, we would then obtain a non-standard result in computability
theory, contradicting the following, well-known property of Turing machines:

“One reason for the acceptance of the Turing machine as a general model of a
computation is that the model with which we have been dealing is equivalent to many
modified versions that would seem off-hand to have increased computing power.” [32,
p.159]

To recap, ADM’s are not Turing machines.
The next question, then, is: Why would ADM’s (which have one output tape) partially

compute less functions than BDM’s (which have two output tapes)? On the one hand, for any
ADM 𝑀 there clearly exists a BDM 𝑁 that can simulate 𝑀 . So ADM’s are definitely not more
powerful than BDM’s. On the other hand, we can concoct a BDM 𝑁* that diagonalizes out
of the class of all ADM’s. When 𝑁* is asked to run on input ⟨𝑀,𝑤⟩, BDM 𝑁* will not only
simulate ADM 𝑀 on input word 𝑤 on its work tape. BDM 𝑁* will also ensure that its own
output is spread across its two output tapes, such that, at all times, the output (generated so
far) by 𝑁* differs from the output (generated so far) by 𝑀 . Leaving the details for later, the
implication is that 𝑁* partially computes a function 𝑓* that is provably not partially computable
by any ADM. The crux will be that:

∙ The output tape of 𝑀 and the two output tapes of 𝑁* are, at all times, observable to the
outside world.

∙ Once a symbol is printed on an output tape, it remains there forever.

∙ Output symbols are printed from left to right, for each output tape.

A similar construction leads to the conclusion that BDM’s (which have two output tapes) are
computationally inferior to CDM’s (which have three output tapes). And so on.

To remain at an elementary level, however, I now present five introductory subsections. The
last subsection outlines the rest of this article.

1.1 Syntax and Semantics

The critical reader will observe that I am not abandoning the input/output perspective which
prevails in recursive function theory. Specifically, I stick to partial functions on the naturals
(N) and to the viewpoint that machines (e.g., DTM’s and ADM’s) serve the sole purpose
of ”mathematically implementing” such functions. Several paradigms that are orthogonal to
classical computability theory, many of which are concurrency- and interaction-centric [26, 30],
are only discussed in the present and in the final section, not in the main body of this article.
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Moreover, when mathematically modeling a human computer, I will not resort to multiple forms
of hypercomputation that can be found in the literature today [13, 23]. For example, I will not
rely on infinitely fast computations, nor on storage of infinitely many bits in a finite space, etc.

With those topics put into context, note that I am nevertheless advocating a more general
conception of the word “algorithm.” On the one hand, I am following Alan Turing in 1936 with
his computable real numbers in that an algorithm need not halt. (Turing even eschewed halting
computations altogether.) On the other hand, both Turing’s original 1936 machines [56] and
the later re-cast “Turing machines” [16, 33] have in common that the complete result of an
algorithm attains a meaning in the outside world in one, full sweep only. An ADM, by contrast,
can provide finite, definitive output to the outside world at various stages. Even an ADM that
prints one bit and immediately halts differs conceptually from a halting Turing machine that
has the same output (for the same input). The Turing machine reveals its one-bit output to the
outside world only after halting, not before. This observation clarifies my personal preference
to write about alternative machines, not generalized Turing machines, although my inspiration
definitely comes from computer science textbooks in which occurrences of the words “Turing
machine” are abundant.3

To elaborate on the distinction between ADM’s and DTM’s, I distinguish between the syntax
and the semantics of both kinds of machines:

∙ Syntactically, an ADM 𝑁 is a 2-tape DTM. Specifically, 𝑁 has one read-write tape, serving
both as input and work tape, and it has a write-only output tape. Both tapes are one-way
infinite with a leftmost cell and infinite progression to the right. ADM 𝑁 can print out
symbols 𝛼 (with 𝛼 in some finite alphabet, called Γ) on its output tape from left to right
only, and as long as it has not (yet) printed the end marker $, with $ /∈ Γ.4

∙ Semantically, however, an ADM 𝑁 is slightly different from any conceivable DTM in that
𝑁 ’s generated output, which at any moment is finite in length, can be perceived by the
outside world, also when 𝑁 ’s computation has not (yet) terminated.

The semantic part comes naturally (at least to the present author) when attempting to model
the aforementioned mathematician: a solitary, smart, human computer who contributes to her
research community by publishing research findings piecemeal instead of all in one go. The
research output perceived by the outside world is at any time a prefix of the mathematician’s
complete output, which, in the limit, can be either finite or infinite in length. A finite output in
the limit will be considered desirable in most of this article. (The exception is Section 10 where
I zoom in on Turing’s 1936 paper.) My objective, after all, is to scrutinize the Church-Turing
Thesis by:

1. Seeking mathematical machines that have a better model fidelity with regard to human
computers than Turing machines.

2. Deviating as little as possible from the modern “Turing machine” concept, as provided by
Kleene [33], Davis [16, 19], and Hopcroft & Ullman [32].

It is Hopcroft & Ullman’s definition of a “Turing machine” that I will mostly duplicate in Section 2
and tweak in Section 4, in order to provide novel theoretical content in Section 6 and onward.

3My observation pertains to the modern “Turing machine” concept [32]. For an epistemological build-up of
that concept, see Liesbeth De Mol’s account [45].

4It is of course possible to formalize the same idea by resorting to a 1-tape DTM or a 3-tape DTM, formalizations
that lie outside the scope of the present article.
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1.2 Nonhalting Computations

To recapitulate, apart from some input 𝑤 ∈ Σ* provided at the beginning of the computation
(where Σ is a finite alphabet), an ADM-modeled mathematician does not receive input from the
outside world at all. The main difference between a DTM 𝑀 and an ADM 𝑁 is that one has to
wait for 𝑀 to come to a halt before any part of its output attains a meaning, while this constraint
does not apply to 𝑁 . From a computability perspective, the bottom line will turn out to be this:

A nonhalting DTM doesn’t mean anything (to Kleene et al. in the 1950s and later),
but a nonhalting ADM can convey useful information, provided it prints from left to
right a finite number 𝑛 of output symbols, with 𝑛 > 0.

The mathematical implication, as will be demonstrated, is the existence of a function on N
partially computable by an ADM but by no DTM (Theorem 25). The Church-Turing Thesis is
potentially in jeopardy (Corollary 26). Any definitive claim about the status of the Thesis lies,
partially due to its sociological dimension, outside the scope of this article. The mathematical
findings presented in the following sections do not immediately suggest any new, practical import.

Before raising objections concerning ADM’s, as any critical reader will, let us first contemplate
the following common remark pertaining to DTM’s and the partial functions 𝑓 on N that they
implement. When the outside world relies on a DTM 𝑀 computing on some input 𝑤, it generally
does not know a priori when 𝑀 will have spent enough computational steps on 𝑤 to derive an
output. Loosely speaking, we have the following common scenario:

The practical user of 𝑀 only has finite resources at his disposal and, therefore, might
falsely conclude that 𝑀 on 𝑤 does not halt. That is, even though 𝑓(𝑥) is defined,
with 𝑤 = 𝑒𝑛𝑐(𝑥), the user might incorrectly assign an “undefined” value, ⊥, to 𝑓(𝑥).

Indeed, a Turing machine computation is, in general, only trustworthy in the limit ; one can
only correctly assert 𝑓(𝑥) = ⊥ provided that space and time constraints do not apply (and the
computation in hand fails to terminate). Coming now to ADM’s, no more than a similar critique
holds. In the general case, and colloquially speaking, one cannot know a priori whether ADM
𝑁 on some input 𝑤 prints only a finite number 𝑛 of symbols, with 𝑛 > 0. Consider also the
following feasible scenario:

The practical user of 𝑁 does know a priori that 𝑁 will print at most two symbols.
Unfortunately, due to finite resources, he falsely concludes that 𝑁 on 𝑤 outputs 𝜎1

while, in fact, it outputs 𝜎1𝜎2 in the limit.

The crux is, that, in the general case, a computation of an ADM 𝑁 is only fully reliable in the
limit ; one can only confidently make assertions about 𝑁 ’s complete functional semantics, i.e.,
𝑓(𝑥), when resource constraints do not apply.

The remarks just presented do not prohibit the reader from working with infinitely large
subsets of DTM’s and ADM’s, which are guaranteed to map finite input to finite output, optionally
with constraints on the output length.

1.3 ADM’s in Context

I use the natural phrase “computing in the limit” since I am perusing computations that need
not halt. My intended meaning of this phrase does not coincide with that of Stewart Shapiro [39],
Mark Burgin [9], Peter Kugel, et al. Specifically, the following words from Kugel convey the crux
of what are called eventually correct machines in the literature. His words do not capture the
essence of ADM’s.
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“When we use a computer to compute, we take its first output to be its result. But
when we use it to compute in the limit, we take its last output as its result without
requiring that it announce when an output is its last.” [36, p.35, my emphasis]

In contrast to the previous passage, ADM’s spit out symbols that are part of the final output.
The symbols are produced from left to right only; that is, they cannot be retroactively modified.
Again, ADM’s are mathematical models of real mathematicians, who, using pencil and paper,
are unable to provide all digits of their outcome instantly, only incrementally. Turing in 1936,
and Kleene in the 1940s, did not model this particular trait of human computing — even though
Turing, in his 1936 work, took the limitation of the human sensory apparatus into account.5 In
retrospect, perhaps Turing was modeling the solitary mathematician (like himself) who does not
compute results for the outside world to see; cf. [47, p.97].

Kleene modeled Turing machine computation from a black-box perspective: input symbols go
into the box, and, if all goes well, output symbols come out. Unlike Kleene, I adhere to a grey-box
perspective: I distinguish between symbols that come out earlier than others. (Likewise, input
symbols need not go inside the box in one sweep either. This characteristic of real input/output
computation is, however, ignored in the present paper.) The conceptual discrepancy is perhaps
best conveyed by referring, not to Kleene’s original work on automata theory, but, rather, to
Marvin Minsky’s pedagogical — and historically influential — 1967 book Computation: Finite
and Infinite Machines [43]. Minsky’s “finite-state machines” in his Chapter 2 provide output
symbols to the outside world in a piecemeal fashion; that is, as the computation in hand proceeds.
But the same cannot be said of his “Turing machines” in his Chapter 6. Again, the reader might
ask, why can’t Turing machines produce definitive output symbols (for the outside world to see)
at interval stages; that is, in a piecemeal fashion? An historical answer lies in Minsky’s own
words:

“A Turing machine is a finite-state machine associated with a special kind of
environment—its tape—in which it can store (and later recover) sequences of sym-
bols.” [43, p.107, original emphasis]

According to Minsky (and computer scientists today), a Turing machine, is a “closed system” [43,
p.119]. Moreover, in compliance with the Church-Turing Thesis, it is the most powerful of all
sensible generalizations of a finite-state machine — which, in turn, is an open system [43, p.114].
Nowhere does Minsky peruse the ADM model of computation, which, in retrospect, is another po-
tentially fruitful generalization of a finite-state machine. To the best of my knowledge, this critique
holds not only for Minsky’s 1967 book, but for all modern textbook treatments of the “Turing
machine” concept, since the publication of Kleene’s 1952 Introduction to Metamathematics [33].

My plea to embrace the concept of an ADM approaches, but does not trespass, the border
between traditional computability theory (where mathematical functions prevail) and computation
as interaction (where other mathematical objects can have their say too). See e.g. the seminal
work of Robin Milner for an example of the latter [42]. Milner’s views on the Church-Turing
Thesis have been conveyed, correctly or incorrectly, by others, including Peter Wegner [60] and
Samson Abramsky. The latter is quoted in S. Barry Cooper’s 2012 review article as follows:

“There is indeed a lack of a clear-cut Church-Turing thesis in this wider sphere of
computation—computation as interaction, as Robin Milner put it.” [12, p.76]

Contrast this viewpoint with that of yet other respectable scholars: Nachum Dershowitz & Yuri
Gurevich [22] and Wilfried Sieg [52]. For example, Sieg has introduced the abstract concept of

5See Wilfried Sieg et al. [53, p.201]. A similar remark holds for Emil Post and his attempt “to capture all
possible processes we humans can set-up to solve problems” [44].
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a “computable dynamical system.” He shares the view that the Church-Turing Thesis holds on
a broad scale; that is, also for parallel computation, including distributed systems. Especially
in this broader context, it is more than natural for a critic, such as myself, to scrutinize the
interaction between a Turing machine and its outside world. For, the outside world can, again,
consist of Turing machines and the like. Specifically, although I appreciate each of Sieg’s four
informal requirements for human computers [52, p.392], listed below, I take gentle issue with
Sieg’s implicit assumption that output produced by each of his (sub)systems always, and only,
happens in one, full sweep — an assumption, that, to the best of my knowledge, has not been
made explicit in the literature so far. In Sieg’s words, human computers:

1. Operate on finite, but unbounded configurations.

2. Recognize, in each configuration, a unique sub-configuration or pattern from a fixed, finite
list.

3. Operate on the recognized pattern.

4. Assemble the next configuration from the original one and the result of the local operation.

Presumably, researchers with Sieg’s profile will initially, from the outset, have the inclination
to scrutinize the present paper along the following lines:

“Turing machines cannot be successfully analyzed by a finite general procedure to
determine what they might do sometime in the future.”

This statement, coming from Charles Petzold’s insightful book [47, p.307], also holds — or, very
likely, also holds — when the italicized words refer, not to Turing machines, but to ADM’s. For,
indeed, at least in the present paper I will not provide the reader with an ADM-based procedure
to “successfully” analyze an arbitrary Turing machine 𝑀 , unless it is permissible to thoroughly
simulate 𝑀 . Turing machines, in contrast, cannot, in the general case, successfully analyze 𝑀
even if they are allowed to thoroughly simulate 𝑀 — unless, of course, one tweaks the standard
definition of a Turing machine [32, Ch.7], as I do in the present paper, which will then result in
the ADM model of computation or something similar.

The crux of this exposition is that neither a finite general procedure, nor an algorithm, need
to be modeled by a Turing machine: there are more powerful machines that can realistically take
over the modeling role of Turing machines. And, as we shall see, ADM’s reveal only the tip of
the iceberg in this regard.

1.4 Theoretical Findings

Trained initially as an engineer, I hold the opinion that ADM’s have a higher model fidelity than
DTM’s with regard to human (and electronic) computing. This modeling viewpoint may, or may
not, have theoretical implications in the realm of computable functions; that is, in a world where
space and time constraints do not apply. As already mentioned however, it turns out that ADM’s
make a small, yet noticeable, difference on this mathematical scene.6 In the present article I will:

∙ Show that every function that is DTM computable is also ADM computable (Theorem 23).

∙ Prove the existence of a function partially computable by an ADM, but by no DTM
(Theorem 25).

6I opine that multiple scholars would endorse the statements just made about ADM’s high model fidelity as
long as ADM’s turn out to be no more than Turing complete. Alas, this is not the case.

7



∙ Provide an ADM-based method to generate a subset of N that is not computably enumerable
(Theorem 29).

Whether these results suffice to unplug the Church-Turing Thesis is a matter that is preferably
addressed by multiple — and, especially, future — generations of scholars, rather than by any
single authority. Perhaps the following 1989 words from Israel Kleiner convey the potential,
indirect merit of the present paper:

“Counterexamples play an important role in mathematics. They illuminate
relationships, clarify concepts, and often lead to the creation of new
mathematics.” [34, p.294]

Halting Problem

It seems to be a common misunderstanding (in mainstream computer science) that a prerequisite
to invalidating the Church-Turing Thesis is solving the halting problem of ordinary Turing
machines. It will turn out that:

∙ There are plenty of functions 𝑓 on N which are, and are not, partially computable by ADM’s,
and DTM’s, respectively.

∙ Knowledge of all (𝑥, 𝑓(𝑥)) pairs will still not suffice for any ADM to solve the halting
problem of Turing machines.

What matters is that ADM’s have no lower model fidelity than DTM’s and they are provably
stronger computationally (i.e., in terms of recursive function theory). For, suppose I were to
present a model of computation that is provably stronger than the Turing machine model but
which relies on, say, the capability of carrying out infinitely many computational steps in finite
time. Then, the reader will rightfully complain that my model has a lower fidelity than the Turing
machine model.

Nevertheless, to thoroughly understand the ADM model of computation, it does pay to
examine how far ADM’s can go further than DTM’s in attempting to solve the latter’s halting
problem. Doing so, as summarized in the following paragraphs, will lead the reader through
a maze of ever-more powerful machines and, finally, to the aforementioned eventually correct
machines that have been described in the literature before.

Consider, to begin with, an arbitrary computably enumerable set 𝑆 of naturals. The charac-
teristic function of 𝑆, denoted 𝜒𝑆 , maps naturals to either 0 or 1 like this:

∙ 𝜒𝑆(𝑛) = 0 if 𝑛 /∈ 𝑆

∙ 𝜒𝑆(𝑛) = 1 if 𝑛 ∈ 𝑆

If my charitable readership allows the number 0 to be encoded with the string 0 and the
number 1 with the string 0𝜎, where 𝜎 is any nonempty string of the reader’s choosing, then it
is possible to construct an ADM 𝑁 that computes 𝜒𝑆 in the limit, for the given set 𝑆. More
generally, if the reader accepts any encoding function 𝑒𝑛𝑐 such that 𝑒𝑛𝑐(0) is a strict prefix of
𝑒𝑛𝑐(1), then one can construct an ADM that computes 𝜒𝑆 in the limit, for the given set 𝑆.
For instance, set 𝑆 can be the halting set for ordinary Turing machines (cf. Corollary 28 and
Theorem 39).

An important remark is that many texts on computability theory, including Kleene’s 1952
book [33], use unary notation. Specifically, if we define the encoding of 𝑛 to be a string of ones of
length 𝑛 + 1, then the characteristic function of the halting set of ordinary Turing machines is
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Figure 1.1: Illustrating the tapes of a CDM: tape 1 contains input, and tapes 2, 3, and 4 contain
output.

computable in the limit by a potentially nonhalting ADM that outputs at most two symbols on
every input. (That is, the ADM in hand need not have the capability to produce an unbounded,
yet finite, number of output symbols.)

Now, coming to my critical readership. If they insist that, say, 𝑒𝑛𝑐(0) is string 0 and 𝑒𝑛𝑐(1) is
string 10, then machines that can prepend bits to their output, rather than append bits, come in
handy. I call machines that can both prepend and append bits BDM’s. They naturally extend
ADM’s and amount to the following analogy: a mathematician typically writes the preface of her
Ph.D. dissertation after having produced and discussed her lemmas and theorems. (The present
author wrote the abstract of the present article after spending months on all the rest.) BDM’s
have a high model fidelity in this regard, while ADM’s do not. One possible implementation
choice for a BDM amounts to the following:

∙ Just like an ADM, a BDM has an input and work tape, which we call its first tape.

∙ Appending symbols 𝜎1 takes place on a one-way infinite, left-to-right output tape. This
second tape is merely a clone of ADM’s output tape.

∙ Prepending symbols 𝜎2 occurs on a separate one-way infinite, left-to-right output tape,
called the third tape.

∙ The complete output string, 𝜎2𝜎1, is read from left to right, starting with the leftmost
symbol on the third tape, and ending with the rightmost symbol on the second tape.

∙ Just like an ADM, the output symbols of a BDM are observable to the outside world as
soon as they have been printed (i.e., on either the second or third tape).

Figure 1.1 illustrates a BDM if tape 4 is discarded from the figure. A variant of the BDM
concept is discussed formally in Section 10. Suffice to mention here that BDM’s can be used to
compute the characteristic function of the halting set of ordinary Turing machines for any of the
aforementioned encoding schemes.

Coming to the devil’s advocate. Suppose he insists that 𝑒𝑛𝑐(0) is, say, string 0 and 𝑒𝑛𝑐(1)
is, say, string 1. BDM’s cannot solve the halting problem of ordinary Turing machines in this
particular setting (and, therefore, neither can ADM’s). More powerful machines can, nevertheless,
be concocted:

1. One approach is to add another output tape to a BDM, resulting in a CDM (illustrated in
Figure 1.1). CDM’s are computationally stronger than BDM’s. In general, one can keep
adding output tapes and, accordingly, keep obtaining computationally stronger machines
(cf. Section 10). This can be done any finite number of times. None of these machines,
though, will solve the halting problem of the devil’s advocate.
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2. Another, orthogonal, approach is to allow an ADM (or a BDM, or a CDM, . . .) to modify 𝑟
output symbols, where 𝑟 is a fixed, natural number. Even more generally, one could concoct
a machine that can modify output symbols a finite, yet unbounded, number of times.

This second idea can be found in the writings of e.g. Timothy McCarthy & Stewart Shapiro [39]
and Mark Burgin [9]. It suffices to empower an ADM with the capability of modifying no more
than one output symbol in order to solve the halting problem of the devil’s advocate, as Burgin
has demonstrated with his inductive Turing machines [9, Ch.4]. A discussion will follow in
Section 11, where I provide a new incentive to also embrace these more powerful machines as
natural models of algorithms.

1.5 Outline

In the interest of obtaining a bird’s-eye view, the reader is encouraged to read the last section
(i.e., Section 11) before delving into the rest of this article. Moreover, a distinction can be made
between odd-numbered and even-numbered sections. Odd-numbered sections convey ideas mostly
in plain English. They can be consulted before delving into the even-numbered sections, which,
in turn, provide the mathematical rigor.

Section 2 contains no surprises, for it merely reintroduces the common “Turing Machine” setup.
A few comments about this setup follow in Section 3, along with general remarks pertaining
to Section 4. The latter section, in turn, formally introduces the ADM model of computation.
Section 5, being an odd-numbered section, summarizes parts of both the previous and the next
section. In Section 6 I demonstrate ADM’s computational superiority over DTM’s. Another
intermezzo appears in Section 7, before I detail the limits of ADM’s computational power in
Section 8. Finally, Section 9 transitions from computing functions on the naturals (ADM’s) to
computing functions on the reals (AdM’s). A treatment of AdM’s, BdM’s, and CdM’s follows
suit in Section 10.

2 Preliminaries and Deterministic Turing Machines

2.1 Strings

The terms “string” and “word” are used as synonyms. We assume the reader is familiar with
string-based notation:

∙ the empty string 𝜖 of length zero,

∙ the concatenation 𝛼1𝛼2 of two strings 𝛼1 and 𝛼2,

∙ Γ*, which denotes the set of all strings of symbols in alphabet Γ,

∙ Γ+ = Γ* ∖ {𝜖},

∙ the length |𝑤| of string 𝑤.

Finally, both 𝛼1 and 𝛼1𝛼2 are prefixes (⪯) of 𝛼1𝛼2, but only 𝛼1 is a strict prefix (≺) of 𝛼1𝛼2

and with the proviso that 𝛼2 ̸= 𝜖.
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2.2 Definitions from Hopcroft, Ullman, and Davis

Copying from Hopcroft and Ullman [32, Ch.7], we obtain the following formal setup.
All deterministic Turing machines under consideration have one tape only and, specifically, a

one-way infinite tape. The tape has a leftmost cell and progresses infinitely to the right.

Definition 1. A deterministic Turing machine (abbreviated DTM) is denoted

𝑀 = (𝑄,Σ,Γ, 𝛿, 𝑞0, 𝑏, 𝐹 )
where
𝑄 is the finite set of states,
Γ is the finite set of allowable tape symbols,
𝑏, a symbol of Γ, is the blank,
Σ, a subset of Γ not including 𝑏, is the set of input symbols,
𝛿 is the next move function, a partial mapping from 𝑄× Γ to 𝑄× Γ × {𝐿,𝑅},
𝑞0 ∈ 𝑄 is the start state,
𝐹 ⊆ 𝑄 is the set of final states.

Remark. For the sake of halting computations, it is desirable that 𝛿 is undefined for some
arguments. We assume that 𝑄 and Γ are disjoint. Moreover, note that 𝐿 and 𝑅 are intended to
mean “move left” and “move right,” respectively.

We denote an instantaneous description (ID) of the Turing machine 𝑀 by 𝛼1𝑞𝛼2 with three
provisos:

1. The current state 𝑞 of 𝑀 has to be in 𝑄.

2. 𝛼1𝛼2 is the string in Γ* that is the contents of the tape up to the rightmost nonblank
symbol or the symbol to the left of the head, whichever is rightmost.

3. The tape head is assumed to be scanning the leftmost symbol of 𝛼2, or if 𝛼2 = 𝜖 (the empty
string), then the head is scanning a blank.

We define a move of 𝑀 as follows (also called a computational step in the present article). Let
𝑋1𝑋2 · · ·𝑋𝑖−1𝑞𝑋𝑖 · · ·𝑋𝑛 be an ID. We distinguish between two cases.

1. Suppose 𝛿 (𝑞,𝑋𝑖) = (𝑝, 𝑌, 𝐿), where if 𝑖 − 1 = 𝑛, then 𝑋𝑖 is taken to be the blank 𝑏. We
distinguish between two subcases:

(a) 𝑖 = 1

There is no next ID, as the tape head is not allowed to fall off the left end of the tape.

(b) 𝑖 > 1

Then we write:

𝑋1𝑋2 · · ·𝑋𝑖−1𝑞𝑋𝑖 · · ·𝑋𝑛 ⊢𝑀 𝑋1𝑋2 · · ·𝑋𝑖−2𝑝𝑋𝑖−1𝑌 𝑋𝑖+1 · · ·𝑋𝑛

However, if any suffix of 𝑋𝑖−1𝑌 𝑋𝑖+1 · · ·𝑋𝑛 is completely blank, that suffix is deleted.

2. Suppose 𝛿 (𝑞,𝑋𝑖) = (𝑝, 𝑌,𝑅). Then we write:

𝑋1𝑋2 · · ·𝑋𝑖−1𝑞𝑋𝑖𝑋𝑖+1 · · ·𝑋𝑛 ⊢𝑀 𝑋1𝑋2 · · ·𝑋𝑖−1𝑌 𝑝𝑋𝑖+1 · · ·𝑋𝑛

Note that in the case 𝑖 − 1 = 𝑛, the string 𝑋𝑖𝑋𝑖+1 · · ·𝑋𝑛 is empty, and the right side of
⊢𝑀 is longer than the left side of ⊢𝑀 .

If two ID’s are related by ⊢𝑀 , we say that the second results from the first by one move. If one
ID results from another by some finite number of moves, including zero moves, they are related
by the symbol ⊢*

𝑀 .
Following Davis to some extent [16, Ch.1], we define various notions of computation.
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Definition 2. An ID 𝜏1 is called terminal with regard to DTM 𝑀 if for no ID 𝜏2 do we have
𝜏1 ⊢𝑀 𝜏2. By a finite computation of DTM 𝑀 is meant a finite sequence 𝜏1, 𝜏2, . . ., 𝜏𝑝 of ID’s
such that 𝜏𝑖 ⊢𝑀 𝜏𝑖+1 for 1 ≤ 𝑖 < 𝑝. By a terminating or halting computation of DTM 𝑀 is
meant a finite computation 𝜏1, 𝜏2, . . ., 𝜏𝑝 of 𝑀 in which the last ID 𝜏𝑝 is terminal with regard to
𝑀 . We write 𝜏𝑝 = 𝑅𝑒𝑠𝑀 (𝜏1) and we call 𝜏𝑝 the result of 𝜏1 with regard to 𝑀 . By an infinite
computation of 𝑀 is meant an infinite sequence 𝜏1, 𝜏2, . . . of ID’s such that 𝜏𝑖 ⊢𝑀 𝜏𝑖+1 for all
𝑖 ≥ 1. In this case we also say that 𝑀 does not halt. By a computation of 𝑀 is meant either a
finite computation or an infinite computation of 𝑀 .

2.3 Functions implemented by Turing Machines.

We denote a function 𝑓 from domain 𝑋 to co-domain 𝑌 by 𝑓 :: 𝑋 → 𝑌 . For every 𝑥 ∈ 𝑋, there
exists 𝑦 ∈ 𝑌 such that 𝑓(𝑥) = 𝑦. When we write 𝑓 :: 𝑋 → 𝑌 ∪ {⊥}, with ⊥ /∈ 𝑌 , we have: for
every 𝑥 ∈ 𝑋, there exists either 𝑦 ∈ 𝑌 or 𝑦 = ⊥ such that 𝑓(𝑥) = 𝑦. We say that two functions
𝑓, 𝑔 :: 𝑋 → 𝑌 ∪ {⊥} are equal, denoted 𝑓 = 𝑔, when either 𝑓(𝑥) = 𝑔(𝑥) ∈ 𝑌 or 𝑓(𝑥) = 𝑔(𝑥) = ⊥,
for all 𝑥 ∈ 𝑋.

Remark. We often write 𝑌⊥ as shorthand for 𝑌 ∪ {⊥}.

Definition 3. A function 𝑓 :: 𝑋 → 𝑌 is an injection (also called one-to-one) when, for any
𝑥1, 𝑥2 ∈ 𝑋, 𝑥1 ̸= 𝑥2 implies 𝑓(𝑥1) ̸= 𝑓(𝑥2). A function 𝑓 :: 𝑋 → 𝑌 is a bijection when 𝑓 is an
injection and 𝑌 = {𝑓(𝑥) | 𝑥 ∈ 𝑋}.

Definition 4. We say that DTM 𝑀 (mathematically) implements function 𝑓 :: N→ N⊥ when
the following two equivalences hold, for ∀𝑥, 𝑦 ∈ N:
(1) 𝑓(𝑥) = 𝑦 if and only if 𝑀 on 𝑒𝑛𝑐(𝑥) halts with output 𝑒𝑛𝑐(𝑦).
(2) 𝑓(𝑥) = ⊥ if and only if 𝑀 on 𝑒𝑛𝑐(𝑥) does not halt.
We say that DTM 𝑀 computes function 𝑓 :: N→ N⊥ in the limit, when 𝑀 implements 𝑓 .

Remark 5. When DTM 𝑀 implements 𝑓 :: N→ N⊥, then we can also say that DTM 𝑀 partially
computes 𝑓 , with total function 𝑓 and partial function 𝑓 on N closely related in the following way:
𝑓(𝑥) = 𝑓(𝑥), when 𝑓(𝑥) ∈ N
𝑥 does not belong to the domain of 𝑓 , when 𝑓(𝑥) = ⊥.

Lemma 6. Given two functions 𝑓, 𝑔 :: N→ N⊥ and some DTM 𝑀 that implements both 𝑓 and
𝑔. Then 𝑓 = 𝑔.

Proof. Take any DTM 𝑀 that implements both functions 𝑓 and 𝑔. Suppose 𝑓 ̸= 𝑔; that is, there
exists some natural number 𝑥 for which 𝑓(𝑥) ̸= 𝑔(𝑥). Without loss of generality, 𝑓(𝑥) = 𝑦 ∈ N.
Then 𝑀 on 𝑒𝑛𝑐(𝑥) halts and outputs 𝑒𝑛𝑐(𝑦).
Case 1: Suppose 𝑔(𝑥) = 𝑦′ ∈ N. Then 𝑀 on 𝑒𝑛𝑐(𝑥) halts and outputs 𝑒𝑛𝑐(𝑦′), with 𝑦 ≠ 𝑦′. But
then 𝑒𝑛𝑐(𝑦) ̸= 𝑒𝑛𝑐(𝑦′). Contradiction.
Case 2: Suppose 𝑔(𝑥) = ⊥. Then 𝑀 on 𝑒𝑛𝑐(𝑥) does not halt. Contradiction.

Therefore, 𝑓 = 𝑔.

Remark 7. Encoding function 𝑒𝑛𝑐 is introduced in the next section. Note that 𝑒𝑛𝑐 has to be
injective for the previous proof to be correct.

Definition 8. We say that DTM’s 𝑀1 and 𝑀2 are functionally equivalent when there exists a
function 𝑓 :: N→ N⊥ such that both 𝑀1 and 𝑀2 implement 𝑓 .
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2.4 Encodings

The notation ⟨·⟩ denotes some standard, bijective encoding of N𝑛 into N. Frequently we use ⟨·⟩
as a pairing function to associate a unique number ⟨𝑥, 𝑦⟩ with each pair of numbers (𝑥, 𝑦). With
abuse of notation, we also write ⟨𝑥, 𝑦⟩ where 𝑥 and 𝑦 are strings instead of natural numbers.
Likewise, we write ⟨𝑀,𝑤⟩ to denote either the Gödel number 𝑛 or the corresponding string (which
encodes that number 𝑛), where 𝑀 is a description of a Turing machine and 𝑤 typically serves as
input string for 𝑀 .

We are also interested in encodings 𝑒𝑛𝑐 from N⊥ to strings over the finite alphabet Σ; that is,
𝑒𝑛𝑐 :: N⊥ → Σ*. Any standard, injective encoding is acceptable with the proviso that the empty
string 𝜖 is the encoding of ⊥; that is, 𝜖 = 𝑒𝑛𝑐(⊥).

Remark 9. If the reader prefers 𝑒𝑛𝑐(⊥) not to be 𝜖, but, rather, some string of length 𝑙 > 0, then
the proofs in the sequel will have to be modified accordingly. In particular, when seeking some
string different from 𝑒𝑛𝑐(⊥), the reader can take 0𝑙+1, but not 0, as a candidate for the proofs to
carry through.

Following Christos Papadimitriou [46, p.57] to some extent, without giving all the obvious
details, we obtain the following definition:

Definition 10. A universal (deterministic) Turing machine 𝑈 (abbreviated UTM 𝑈), when
provided an input, interprets this input as the description of another DTM 𝑀 , concatenated with
the description of an input to 𝑀 , say 𝑤. 𝑈 simulates 𝑀 ’s computation on input 𝑤. We write:
𝑈(⟨𝑀,𝑤⟩) = 𝑀(𝑤).

3 From Preliminaries to Alternative Deterministic Machines

In the previous section I have mainly appropriated part of Hopcroft and Ullman’s formal exposition
(1979), and to a lesser extent that of Davis (1958). Besides defining the notions of “deterministic
Turing machine” (DTM) and “computation,” I have explicitly distinguished between:

∙ Partial functions on the naturals.

∙ Deterministic Turing machines that implement such functions.

Given some fixed, standard encoding function 𝑒𝑛𝑐 :: N⊥ → Σ*, Lemma 6 tells us that
each DTM 𝑀 (which works with alphabet Σ) implements at most one function 𝑓 :: N → N⊥.
Now, given an arbitrary DTM 𝑀 , may we also assert that 𝑀 implements at least one function
𝑓 :: N → N⊥? The answer is affirmative and the corresponding (trivial) proof is omitted. To
recapitulate, then, we have the following result:

Each DTM 𝑀 implements precisely one function 𝑓 :: N→ N⊥.

However, and as is common in classical computability theory, the proviso at all times is that
encoding function 𝑒𝑛𝑐 is fixed from the outset.

In the following section I tweak the previous definitions of “deterministic Turing machine” and
“computation” in order to formally present the ADM model of computation. Definition 11 of an
ADM 𝑁 is key, while the details of the follow-up “move” relation, ⊢𝑁 , will be of less concern to
casual readers. ADM’s are discussed in terms of language recognition (Section 4.1) and computers
of functions (Section 4.2). Concerning computers, Definitions 17 and 18 stand out:

∙ Definition 17 introduces the notion of a converging sequence
𝑆 :: 𝑔1, 𝑔2, 𝑔3, . . . , 𝑓 of functions, relative to encoding function 𝑒𝑛𝑐.
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∙ Each such sequence 𝑆 may, or may not, be implementable by an ADM, as elaborated in
Definition 18.

An understanding of these two definitions will allow the reader to easily grasp Definition 19; that
is, the notion of some ADM 𝑁 computing the aforementioned function 𝑓 in the limit.

Another crucial, albeit trivial, result is Theorem 23, which states that every DTM computable
function (on the naturals) is also ADM computable. That is, DTM’s are not more powerful than
ADM’s.

4 Alternative Deterministic Machines (ADM’s)

Concerning Alternative Deterministic Machines, two observations come in handy in preparation
for the formal treatment.

1. When ADM 𝑁 halts (on a given input 𝑤 ∈ Σ*), it signifies this event by printing out the
end marker $. When 𝑁 has not (yet) halted, the output tape contains no end marker $ and
the already printed output 𝛼1, 𝛼2, . . .,𝛼𝑝 (for some 𝑝 ∈ N) is a prefix of 𝑁 ’s final output
𝛼1, 𝛼2, . . .,𝛼𝑝, 𝛼𝑝+1, . . ., which, in the limit, could be either finite or infinite in length.

2. ADM 𝑁 has two tapes: a read-write tape and an output tape, also called the first tape and
the second tape, respectively.

(a) The head of the first tape can move left (𝐿) or right (𝑅).

(b) The head of the second tape can only move right (𝑅) or remain idle (𝐼); that is, not
move.

Now, to keep the formal exposition concise, we refine the previous statement about printing
symbols in the following way:

1. ADM 𝑁 either prints the blank 𝑏, with 𝑏 ∈ Γ, on the output tape and the tape’s head
remains idle (𝐼).

2. Or, ADM 𝑁 prints any nonblank symbol 𝛼 ∈ {$} ∪ Γ ∖ {𝑏} on the output tape and the
tape’s head moves one cell to the right (𝑅).

Technically, then, 𝑁 produces a symbol on its output tape during every computational step.
However, 𝑁 progresses one cell to the right on its output tape if and only if it has just printed a
nonblank symbol (on the output tape). For completeness’ sake we also explicitly remark that
when ADM 𝑁 prints the end marker $, the head of the output tape moves one cell to the right.

Following Hopcroft & Ullman [32, p.148] to some extent, we can now formally define an ADM.

Definition 11. An Alternative Deterministic Machine 𝑁 (abbreviated ADM) is denoted
𝑁 = (𝑄,Σ,Γ, 𝛿, 𝑞0, 𝑏, $)
where
𝑄 is the finite set of states.
Γ is the finite set of allowable work tape symbols.
𝑏, with 𝑏 ∈ Γ, is the blank.
Σ, with 𝑏 /∈ Σ ⊂ Γ, is the set of input symbols.
$, with $ /∈ Γ, is the end marker.
𝛿 is the next move function, a partial mapping
from 𝑄× Γ to 𝑄× Γ × {𝐿,𝑅} × Γ ∪ {$} × {𝑅, 𝐼};
that is, 𝛿 may be undefined for some arguments.
𝑞0 ∈ 𝑄 is the start state.
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Remark. It is important to note that 𝜖 denotes the string of length zero. Any ADM 𝑁 initially
contains a blank output tape; that is, a tape filled with infinitely many 𝑏 symbols, containing not
a single symbol from (Γ ∪ {$}) ∖ {𝑏}. The output tape is then said to “contain 𝜖 as output.”

We denote an instantaneous description (ID) of ADM 𝑁 by 𝛼1𝑞𝛼2 ‖ 𝛼3 with three provisos:

1. The current state 𝑞 of 𝑁 has to be in 𝑄.

2. Concerning the first tape:

(a) 𝛼1𝛼2 is the string in Γ* that is the contents of the first tape up to the rightmost
nonblank symbol or the symbol to the left of the head, whichever is rightmost.

(b) The head of the first tape is assumed to be scanning the leftmost symbol of 𝛼2, or if
𝛼2 = 𝜖, then the head is scanning a blank.

3. Concerning the second tape:

(a) 𝛼3 is the string in (Γ ∪ {$})
*

that is the contents of the second tape.

(b) The head of the second tape is assumed to be scanning a blank 𝑏, with:

i. Either 𝑏 appearing as the last symbol in 𝛼3.

ii. Or, if the previous case does not apply, 𝑏 appearing as the leftmost blank on the
tape following 𝛼3.

Remark. We use an underscore to denote a “don’t care” value. For instance, we write 𝛼1𝑞𝛼2 ‖
to denote an ID in which we intentionally do not specify the second tape. Likewise, we write
‖ 𝛼3 to denote an ID in which we don’t bother to describe the machine’s control (𝑞), nor the

contents (𝛼1𝛼2) on the first tape, nor the position of the head (𝛼1𝑞) of the first tape.

Inspired by Hopcroft & Ullman [32, p.149], we define a move of 𝑁 as follows (also called a
computational step). Let 𝑋1𝑋2 · · ·𝑋𝑖−1𝑞𝑋𝑖 · · ·𝑋𝑛 ‖ 𝑌1𝑌2 · · ·𝑌𝑚, with 𝑌𝑚 ≠ $, be an ID. We
distinguish between two orthogonal concerns: 1 and 2.

1. For the control and the first tape, taken together, we have to consider two cases:

(a) Suppose 𝛿 (𝑞,𝑋𝑖) = (𝑝, 𝑍, 𝐿, , ), where if 𝑖− 1 = 𝑛, then 𝑋𝑖 is taken to be the blank
𝑏. We distinguish between two subcases:

i. 𝑖 = 1
There is no next ID, as the tape head is not allowed to fall off the left end of the
tape.

ii. 𝑖 > 1
Then we write:
𝑋1𝑋2 · · ·𝑋𝑖−1𝑞𝑋𝑖 · · ·𝑋𝑛 ‖ 𝑌1𝑌2 · · ·𝑌𝑚

⊢𝑁

𝑋1𝑋2 · · ·𝑋𝑖−2𝑝𝑋𝑖−1𝑍𝑋𝑖+1 · · ·𝑋𝑛 ‖
However, if any suffix of 𝑋𝑖−1𝑍𝑋𝑖+1 · · ·𝑋𝑛 is completely blank, that suffix is
deleted.

(b) Suppose 𝛿 (𝑞,𝑋𝑖) = (𝑝, 𝑍,𝑅, , ). Then we write:

𝑋1𝑋2 · · ·𝑋𝑖−1𝑞𝑋𝑖𝑋𝑖+1 · · ·𝑋𝑛 ‖ 𝑌1𝑌2 · · ·𝑌𝑚

⊢𝑁

𝑋1𝑋2 · · ·𝑋𝑖−1𝑍𝑝𝑋𝑖+1 · · ·𝑋𝑛 ‖
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2. For the second tape, we have three cases to consider:

(a) Suppose 𝛿 (𝑞,𝑋𝑖) = ( , , , 𝑏, 𝐼).

Then we write:

𝑋1𝑋2 · · ·𝑋𝑖−1𝑞𝑋𝑖𝑋𝑖+1 · · ·𝑋𝑛 ‖ 𝑌1𝑌2 · · ·𝑌𝑚

⊢𝑁

‖ 𝑌1𝑌2 · · ·𝑌𝑚

(b) Suppose 𝛿 (𝑞,𝑋𝑖) = ( , , , $, 𝑅).

Then we write:

𝑋1𝑋2 · · ·𝑋𝑖−1𝑞𝑋𝑖𝑋𝑖+1 · · ·𝑋𝑛 ‖ 𝑌1𝑌2 · · ·𝑌𝑚

⊢𝑁

‖ 𝑌1𝑌2 · · ·𝑌𝑚$

(c) Suppose 𝛿 (𝑞,𝑋𝑖) = ( , , , 𝑍,𝑅) with 𝑍 ∈ Γ ∖ {𝑏, $}.

Then we write:

𝑋1𝑋2 · · ·𝑋𝑖−1𝑞𝑋𝑖𝑋𝑖+1 · · ·𝑋𝑛 ‖ 𝑌1𝑌2 · · ·𝑌𝑚

⊢𝑁

‖ 𝑌1𝑌2 · · ·𝑌𝑚𝑍

Remark. “𝜏1 ⊢𝑁 ‖ 𝛼3” is shorthand for “there exists 𝛼1, 𝑞, 𝛼2 such that 𝜏1 ⊢𝑁 𝛼1𝑞𝛼2 ‖ 𝛼3”.
Likewise, “𝜏1 ⊢𝑁 𝛼1𝑞𝛼2 ‖ ” is shorthand for “there exists 𝛼3 such that “𝜏1 ⊢𝑁 𝛼1𝑞𝛼2 ‖ 𝛼3”.

If two ID’s are related by ⊢𝑁 , we say that the second results from the first by one move. If
one ID results from another by some finite number of moves, including zero moves, they are
related by the symbol ⊢*

𝑁 . We write ⊢𝑚
𝑁 , for some specific 𝑚 ∈ N, to denote precisely 𝑚 moves,

with ⊢𝑁 as shorthand for ⊢1
𝑁 .

Originally inspired by Davis [16, Ch.1], we provide the following definitions.

Definition 12. An ID 𝜏1 is called terminal with regard to ADM 𝑁 if 𝜏1 is of the following form:
‖ 𝑌1𝑌2 · · ·𝑌𝑚$, for some 𝑚 ∈ N. By a finite computation of ADM 𝑁 is meant a finite sequence

𝜏1, 𝜏2, . . ., 𝜏𝑝 of ID’s such that 𝜏𝑖 ⊢𝑁 𝜏𝑖+1 for 1 ≤ 𝑖 < 𝑝. By a terminating or halting computation
of ADM 𝑁 is meant a finite computation 𝜏1, 𝜏2, . . ., 𝜏𝑝 of 𝑁 in which the last ID 𝜏𝑝 is terminal
(with regard to 𝑁). We then write 𝜏𝑝 = 𝑅𝑒𝑠𝑁 (𝜏1) and we call 𝜏𝑝 the result of 𝜏1 with regard to
𝑁 . By an infinite computation of 𝑁 is meant an infinite sequence 𝜏1, 𝜏2, . . . of ID’s such that
𝜏𝑖 ⊢𝑁 𝜏𝑖+1 for all 𝑖 ≥ 1. In this case we also say that 𝑁 does not halt. By a computation of 𝑁 is
meant either a finite computation or an infinite computation of 𝑁 .

Remark 13. Given an ADM 𝑁 and some input 𝑤. It is possible that the complete computation
of 𝑁 on input 𝑤 is a finite computation but not a terminating computation. Concretely: 𝑁 ’s
run on 𝑤 eventually halts, but 𝑁 has not printed the end marker $ on its output tape. With
that said, one can construct a DTM 𝑀* that takes a description of any ADM 𝑁 and outputs a
description of a similar ADM 𝑁 ′, with 𝑁 ′ having complete computations that are finite if and
only if they are terminating. Without loss of generality, from now on we assume that any ADM
𝑁 halts if and only if $ appears on 𝑁 ’s output tape.

4.1 The ADM as a Language Recognizer

If an ADM were merely a DTM, then the language accepted by ADM 𝑁 , denoted 𝐿(𝑁), would
be the set of those words 𝑤 in Σ* that cause 𝑁 to eventually print $ when 𝑤 is placed, justified at
the left, on the first tape of 𝑁 , with 𝑁 in start state 𝑞0 ∈ 𝑄, and the heads of both tapes of 𝑁 at

16



their leftmost positions. Formally, the language accepted by ADM 𝑁 = (𝑄,Σ,Γ, 𝛿, 𝑞0, 𝑏, $) would
then be 𝐿(𝑁) = {𝑤 | 𝑤 ∈ Σ* and 𝑞0𝑤 ‖ 𝜖 ⊢*

𝑁 𝛼1𝑝𝛼2 ‖ 𝛼3$ with 𝑝 ∈ 𝑄 and 𝛼1, 𝛼2, 𝛼3 ∈ Γ*}.
This definition poorly reflects the intuition provided in Section 1. Infinite computations of a
specific brand need to be incorporated; i.e., infinite computations for which the output does not
change any more after a finite number of moves. That is, we are interested in all words 𝑤 ∈ Σ*

that lead to computations (be it finite or infinite computations) for which the output becomes
fixed after a finite number of computational steps. To recapitulate, even if ADM 𝑁 on 𝑤 does not
halt, if the corresponding output is fixed from some computational step onward, then 𝑤 should
be in 𝐿(𝑁). All this, to prepare the following definition.

Definition 14. The language accepted by ADM 𝑁 , denoted 𝐿(𝑁), is the set of those words 𝑤
in Σ* that cause 𝑁 in the limit to print precisely 𝑛 output symbols in Γ for any 𝑛 > 0, when 𝑤 is
placed, justified at the left, on the first tape of 𝑁 , with 𝑁 in start state 𝑞0 ∈ 𝑄, and the heads
of both tapes of 𝑁 at their leftmost positions. Formally, the language accepted by ADM 𝑁 =
(𝑄,Σ,Γ, 𝛿, 𝑞0, 𝑏, $) is
𝐿(𝑁) = {𝑤 | 𝑤 ∈ Σ* and ∃𝛼 ∈ Γ+. ∃m∈N. ∀m’∈N. 𝐸 or𝐹}, with:
𝐸 = “ 𝑞0𝑤 ‖ 𝜖 ⊢𝑚

𝑁 ‖ 𝛼$ ”

𝐹 = “ 𝑞0𝑤 ‖ 𝜖 ⊢𝑚
𝑁 ‖ 𝛼 ⊢𝑚′

𝑁 ‖ 𝛼 ”

Remark 15. Consider a universal, deterministic Turing machine 𝑈̃ . Consider ADM 𝑈 that on
input ⟨𝑀*, 𝑤*⟩ simulates DTM 𝑀* on input 𝑤* just like 𝑈̃ does on input ⟨𝑀*, 𝑤*⟩. Suppose
the computation of 𝑀* on 𝑤* is infinite. Then 𝑀* on 𝑤* will never output anything, nor will
𝑈̃ when simulating 𝑀* on 𝑤*. In turn, ADM 𝑈 will forever have the empty string 𝜖 as output,
since 𝑈 ’s simulation never terminates. But, the reader might now ask, what if some DTM 𝑀 on
some input 𝑤 halts with 𝜖 as output? This is not possible in the present setup: let 𝑒𝑛𝑐(𝑥) = 𝑤,
then 𝑓(𝑥) = 𝑦 for some 𝑦 ∈ N, and ∀𝑦 ∈ N. 𝑒𝑛𝑐(𝑦) ̸= 𝜖. In other words, Turing machines (and
ADM’s) that halt with empty output (𝜖) are not considered to be relevant in the present setup.

4.2 The ADM as a Computer of Functions

A sequence 𝑆 of functions from N to N is denoted by 𝑆 :: 𝑔1, 𝑔2, 𝑔3, . . . A sequence 𝑆 of functions
from N to N with a limit 𝑓 is denoted by 𝑆 :: 𝑔1, 𝑔2, 𝑔3, . . . 𝑓 .

Definition 16. Two sequences 𝑆 :: 𝑔1, 𝑔2, 𝑔3, . . . 𝑓 and 𝑆′ :: 𝑔′1, 𝑔
′
2, 𝑔

′
3, . . . 𝑓

′ are said to be
equivalent, denoted 𝑆 ≡ 𝑆′, when 𝑔𝑖 = 𝑔′𝑖 for all 𝑖 ≥ 1 and 𝑓 = 𝑓 ′.

Definition 17. A converging sequence 𝑆 :: 𝑔1, 𝑔2, 𝑔3, . . . of functions 𝑔1, 𝑔2, 𝑔3, . . . from N to N,
relative to 𝑒𝑛𝑐, and with limit function 𝑓 :: N → N⊥ — denoted 𝑆 :: 𝑔1, 𝑔2, 𝑔3, . . . , 𝑓 — is a
sequence with the following properties, for ∀𝑥 ∈ N:
(1) ∀𝑖 > 0. [ 𝑒𝑛𝑐(𝑔𝑖(𝑥)) ⪯ 𝑒𝑛𝑐(𝑔𝑖+1(𝑥)) ]
(2) ∀𝑦 ∈ N. [ 𝑓(𝑥) = 𝑦 implies (2a) and (2b) ]
(2a) ∀𝑖 > 0. [ 𝑒𝑛𝑐(𝑔𝑖(𝑥)) ⪯ 𝑒𝑛𝑐(𝑦) ]
(2b) If 𝑒𝑛𝑐(𝑔𝑖(𝑥)) ≺ 𝑒𝑛𝑐(𝑦), for some 𝑖 ≥ 1,
then there exists a larger 𝑗 > 𝑖, such that: 𝑒𝑛𝑐(𝑔𝑖(𝑥)) ≺ 𝑒𝑛𝑐(𝑔𝑗(𝑥))

Remark. When unspecified, quantification is taken to be over the set N of natural numbers. We
frequently write “iff” to abbreviate “if and only if.”

Definition 18. We say that ADM 𝑁 (mathematically) implements a converging sequence
𝑆 :: 𝑔1, 𝑔2, 𝑔3, . . . , 𝑓 , with functions 𝑔𝑖 from N to N and function 𝑓 from N to N⊥, when the
following three conditions hold, for all 𝑥 ∈ N:
(1) ∀𝑦. [ 𝑓(𝑥) = 𝑦 iff ∃𝑡0.∀𝑡 ≥ 𝑡0. 𝑔𝑡(𝑥) = 𝑦 ]
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(2) 𝑓(𝑥) = ⊥ iff ∀𝑦. 𝑓(𝑥) ̸= 𝑦
(3) ∀𝑡, 𝑦. [ 𝑔𝑡(𝑥) = 𝑦 iff 𝑁 on 𝑒𝑛𝑐(𝑥) has 𝑒𝑛𝑐(𝑦) or 𝑒𝑛𝑐(𝑦) $ as output after 𝑡 moves ]

Remark. Condition (1) is called convergence and (2) is called nonconvergence.

Definition 19. We say that ADM 𝑁 computes function 𝑓 :: N → N⊥ in the limit, when
𝑁 implements a converging sequence 𝑆 :: 𝑔1, 𝑔2, 𝑔3, . . . , 𝑓 of functions 𝑔1, 𝑔2, 𝑔3, . . . with limit
function 𝑓 .

Remark. What would it mean if some ADM 𝑁 computes a function 𝑓 :: N → N in the limit
instead of 𝑓 :: N→ N⊥? Then 𝑁 prints in the limit a finite, nonempty output on input 𝑒𝑛𝑐(𝑥),
for any 𝑥 ∈ N. Indeed, 𝑓 :: N→ N is merely a special case of 𝑓 :: N→ N⊥.

Definition 20. We say that two ADM’s 𝑁 and 𝑁 ′ are functionally equivalent (with regard to
function 𝑓 :: N→ N⊥) when 𝑁 implements some converging sequence 𝑆 :: 𝑔1, 𝑔2, 𝑔3, . . . , 𝑓 and
𝑁 ′ implements some converging sequence 𝑆′ :: 𝑔′1, 𝑔

′
2, 𝑔

′
3, . . . , 𝑓 ’, with 𝑓 = 𝑓 ′.

Lemma 21. Given two converging sequences of functions from N to N, called 𝑆 and 𝑆′, and
some ADM 𝑁 that implements both 𝑆 and 𝑆′. Then 𝑆 ≡ 𝑆′.

Proof. Consider an arbitrary ADM 𝑁 that implements both sequences:
𝑆 :: 𝑔1, 𝑔2, 𝑔3, . . . , 𝑓 and 𝑆′ :: 𝑔′1, 𝑔

′
2, 𝑔

′
3, . . . , 𝑓

′. Suppose it is not the case that 𝑆 ≡ 𝑆′.
A first possibility is that 𝑓 ̸= 𝑓 ′; i.e., there exists a natural number 𝑥 for which 𝑓(𝑥) ̸= 𝑓 ′(𝑥).

Without loss of generality, 𝑓(𝑥) = 𝑦 ∈ N. Then, by Definition 18, ∃𝑡0.∀𝑡 ≥ 𝑡0. 𝑔𝑡(𝑥) = 𝑦. We
distinguish between two cases, each case results in a contradiction.
Case 1: 𝑓 ′(𝑥) = 𝑦′ ∈ N. Then, by Definition 18, ∃𝑡′0.∀𝑡′ ≥ 𝑡′0. 𝑔𝑡′(𝑥) = 𝑦′ ̸= 𝑦.
Case 2: 𝑓 ′(𝑥) = ⊥. Then, by Definition 18, ∀𝑦.∀𝑡0.∃𝑡 ≥ 𝑡0. 𝑔𝑡(𝑥) ̸= 𝑦.

A second possibility is that 𝑔𝑖 ≠ 𝑔′𝑖, for some 𝑖 ≥ 1. This means, that, for a specific 𝑥 ∈ N, we
have: 𝑦 = 𝑔𝑖(𝑥) ̸= 𝑔′𝑖(𝑥) = 𝑦′, with 𝑦, 𝑦′ ∈ N. On the one hand, from Definition 18 we have: 𝑁 on
𝑒𝑛𝑐(𝑥) has 𝑒𝑛𝑐(𝑦) or 𝑒𝑛𝑐(𝑦) $ as output after 𝑖 moves. On the other hand, from Definition 18 we
have: 𝑁 on 𝑒𝑛𝑐(𝑥) has 𝑒𝑛𝑐(𝑦′) or 𝑒𝑛𝑐(𝑦′) $ as output after 𝑖 moves. But, 𝑒𝑛𝑐(𝑦) differs both from
𝑒𝑛𝑐(𝑦′) and 𝑒𝑛𝑐(𝑦′) $. Likewise, 𝑒𝑛𝑐(𝑦) $ differs both from 𝑒𝑛𝑐(𝑦′) and 𝑒𝑛𝑐(𝑦′) $. So we have our
desired contradiction.

The conclusion is that 𝑆 ≡ 𝑆′.

Definition 22. We say that DTM 𝑀 and ADM 𝑁 are functionally equivalent when 𝑀 computes
𝑓 in the limit and 𝑁 computes 𝑓 in the limit, for some function 𝑓 :: N→ N⊥.

Theorem 23. Each function 𝑓 :: N→ N⊥ that is DTM computable in the limit, is also ADM
computable in the limit.

Proof. Consider some DTM 𝑀 that computes some function 𝑓 :: N→ N⊥ in the limit; i.e., 𝑀
implements 𝑓 . Then, we have:
(a) ∀𝑦. [ 𝑓(𝑥) = 𝑦 ∈ N iff 𝑀 on 𝑒𝑛𝑐(𝑥) halts with output 𝑒𝑛𝑐(𝑦) ]
(b) 𝑓(𝑥) = ⊥ iff 𝑀 on 𝑒𝑛𝑐(𝑥) does not halt

We have to construct a functionally equivalent ADM 𝑁 , with, for all 𝑥 ∈ N:
(1) ∀𝑦. [ 𝑓(𝑥) = 𝑦 iff ∃𝑡0.∀𝑡 ≥ 𝑡0. 𝑔𝑡(𝑥) = 𝑦 ]
(2) 𝑓(𝑥) = ⊥ iff ∀𝑦. 𝑓(𝑥) ̸= 𝑦
(3) ∀𝑡, 𝑦. [ 𝑔𝑡(𝑥) = 𝑦 iff 𝑁 on 𝑒𝑛𝑐(𝑥) has 𝑒𝑛𝑐(𝑦) or 𝑒𝑛𝑐(𝑦) $ as output after 𝑡 moves ]

Combining (a-b) and (1-3), we have the following requirements for 𝑁 :
+ ∀𝑦. [ 𝑀 on 𝑒𝑛𝑐(𝑥) halts with output 𝑒𝑛𝑐(𝑦) iff ∃𝑡0.∀𝑡 ≥ 𝑡0. 𝑔𝑡(𝑥) = 𝑦 ]
+ 𝑀 on 𝑒𝑛𝑐(𝑥) does not halt iff ∀𝑦. 𝑓(𝑥) ̸= 𝑦
+ ∀𝑡, 𝑦. [ 𝑔𝑡(𝑥) = 𝑦 iff 𝑁 on 𝑒𝑛𝑐(𝑥) has 𝑒𝑛𝑐(𝑦) or 𝑒𝑛𝑐(𝑦) $ as output after 𝑡 moves ]
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So, we have the following requirements for 𝑁 :
+ ∀𝑦. [ 𝑀 on 𝑒𝑛𝑐(𝑥) halts with output 𝑒𝑛𝑐(𝑦) iff ∃𝑡0.∀𝑡 ≥ 𝑡0. 𝑁 on 𝑒𝑛𝑐(𝑥) has 𝑒𝑛𝑐(𝑦) or 𝑒𝑛𝑐(𝑦) $
as output after 𝑡 moves ]
+ 𝑀 on 𝑒𝑛𝑐(𝑥) does not halt iff ∀𝑦.∀𝑡0.∃𝑡 ≥ 𝑡0. 𝑁 on 𝑒𝑛𝑐(𝑥) does not have 𝑒𝑛𝑐(𝑦) nor 𝑒𝑛𝑐(𝑦)$
as output after 𝑡 moves

Now we construct ADM 𝑁 as follows. ADM 𝑁 has DTM 𝑀 hardcoded. 𝑁 on input 𝑒𝑛𝑐(𝑥)
uses its first tape to simulate 𝑀 on 𝑒𝑛𝑐(𝑥). We distinguish between two cases.
Case 1: If the simulation stops,
then 𝑁 copies 𝑀 ’s output 𝑒𝑛𝑐(𝑦) to its second tape, prints $ and halts.
Case 2: If the simulation goes on forever,
then 𝑁 ’s second tape contains 𝜖 forever, and 𝑁 does not halt.

Remark. The previous proof relies on the choices made in Section 2.4 and, specifically, on the
following property: 𝜖 ̸= 𝑒𝑛𝑐(𝑦) and 𝜖 ̸= 𝑒𝑛𝑐(𝑦)$, for all 𝑦 ∈ N.

Definition 24. A universal ADM 𝑈 , when provided an input, interprets this input as the
description of another ADM 𝑁 , concatenated with the description of an input to 𝑁 , say 𝑒𝑛𝑐(𝑥),
with 𝑥 ∈ N. ADM 𝑈 simulates 𝑁 ’s computation on input 𝑒𝑛𝑐(𝑥) such that: 𝑓𝑈 (⟨𝑁, 𝑥⟩) = 𝑓𝑁 (𝑥),
with 𝑓𝑈 and 𝑓𝑁 implemented by 𝑈 and 𝑁 , respectively.

Remark. As is common in computability theory, we have fused three categories:
(1) “ADM 𝑁” in plain English
(2) “the description of ADM 𝑁” in language Σ*

(3) the Gödel-number encoding of “the description of ADM 𝑁” in Σ*.

5 From ADM’s to a Comparison Between DTM’s and ADM’s

The previous section contains a detailed setup of the ADM model of computation. The crux is
Definitions 17, 18 and 19 in concert. Suppose ADM 𝑁 computes function 𝑓 :: N→ N⊥ in the
limit. Then, 𝑁 implements a converging sequence 𝑆 :: 𝑔1, 𝑔2, 𝑔3, . . . , 𝑓 . Only limit function 𝑓 is
partial, while 𝑔1, 𝑔2, 𝑔3, . . . are total functions, mapping naturals to naturals.

Now, consider an arbitrary natural 𝑥 with 𝑤 = 𝑒𝑛𝑐(𝑥). If 𝑁 on input word 𝑤 does not
converge, then 𝑓(𝑥) = ⊥. On the other hand, if 𝑁 on input 𝑤 does converge, then it prints a
finite number 𝑛 of output symbols in the limit, with 𝑛 > 0. We then write: 𝑓(𝑥) = 𝑦, with output
word 𝑤′ = 𝑒𝑛𝑐(𝑦) and |𝑤′| = 𝑛. Convergence on input 𝑥 implies that from some moment 𝑡0, we
have: 𝑔𝑡0(𝑥) = 𝑔𝑡0+1(𝑥) = 𝑔𝑡0+2(𝑥) = . . . = 𝑦.

Perhaps an intuitive way to understand, for a given input 𝑥, the sequence 𝑆 of functions
𝑔1, 𝑔2, 𝑔3, . . . , 𝑓 , is as follows: Associate an Observer 𝑖 with each function 𝑔𝑖, and associate a
God-like Observer 𝐺 with limit function 𝑓 . Observer 𝑖 takes a camera snapshot of machine 𝑁 ’s
output tape after 𝑖 computational steps. And God 𝐺 does the same at infinity. Loosely speaking,
convergence implies that 𝐺’s snapshot, which is either 𝑒𝑛𝑐 (𝑦) or 𝑒𝑛𝑐 (𝑦) $, is also observable by
all but finitely many Observers 𝑖.

The next section contains the main results of this article: Theorem 25, Corollary 26, and
Theorem 29. The overarching idea is relatively simple:

An ADM 𝑉 can simulate an arbitrary DTM 𝑀 on arbitrary input 𝑤. Before starting
the simulation, 𝑉 prints the symbol 0 on its output tape. On the one hand, if the
simulation does not terminate, then 𝑉 has printed nonempty output (i.e., symbol
0 and nothing more), which differs from 𝑀 ’s output (i.e., the empty string). On
the other hand, if the simulation stops, then 𝑀 can print one more output symbol
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(i.e., 0 or 1) such that its entire output differs from 𝑀 ’s output. The net result is
that 𝑉 computes a function on the naturals that differs from every DTM-computable
function.

Another way to appreciate the power of ADM’s is to zoom in on the distinction between a
“computably enumerable” set of naturals and the new form of enumeration demonstrated by ADM
𝐷 in the proof of Theorem 29. The remark following the proof highlights the conceptual difference
between both forms of set enumeration.

6 DTM’s Are Computationally Inferior to ADM’s

We shall now prove the central result of this article: there is an an ADM that computes a function
on N in the limit that no DTM computes in the limit.

Remark. For the sake of presenting concrete arguments, the following proofs implicitly rely on
Σ = {0, 1} and Γ = {0, 1, 𝑏} but in no essential way. Furthermore, we implicitly rely on a canonical
enumeration of DTM descriptions 𝑀1, 𝑀2, . . . and, likewise, on an enumeration of input words
𝑤1, 𝑤2, . . . Specifically, 𝑀𝑑 and 𝑤𝑑 denote the 𝑑-th item in each enumeration, respectively.

Theorem 25. There is a function 𝑓𝑉 :: N→ N⊥ that (i) some ADM 𝑉 computes in the limit,
and (ii) no DTM computes in the limit.

Proof. Starting with part (i) of the theorem, we construct ADM 𝑉 as follows. ADM 𝑉 , on input
𝑤, first checks whether 𝑤 is ⟨𝑀𝑑, 𝑤𝑑⟩ for some 𝑑 ≥ 1, with DTM 𝑀𝑑 and input word 𝑤𝑑. If
this check does not pass, then ADM 𝑉 prints infinitely many times the symbol 0; i.e., ADM 𝑉
demonstrates nonconverging behavior. Else, ADM 𝑉 on input ⟨𝑀𝑑, 𝑤𝑑⟩ prints 0 on its output
tape. Then, ADM 𝑉 simulates DTM 𝑀𝑑 on 𝑤𝑑. Two cases can be distinguished:
Case 1: 𝑀𝑑 on 𝑤𝑑 halts and outputs 𝑤′

𝑑. Then, ADM 𝑉 prints 0 or 1 on its output tape, such
that its total output (00 or 01) differs from 𝑤′

𝑑. 𝑉 then prints $ and halts.
Case 2: 𝑀𝑑 on 𝑤𝑑 does not halt and thus outputs nothing. In this case, ADM 𝑉 merely simulates
𝑀𝑑 on 𝑤𝑑 forever. Note, however, that 𝑉 ’s output tape does contain a string, 0, which differs
from 𝜖, i.e. the string representing ⊥.

Having constructed ADM 𝑉 , we now use Definitions 18 and 19 to specify function 𝑓𝑉 that
ADM 𝑉 computes in the limit. ADM 𝑉 implements a converging sequence 𝑆 :: 𝑔1, 𝑔2, 𝑔3, . . . , 𝑓𝑉
with the following properties, for all 𝑥 ∈ N:
(1) ∀𝑦. [ 𝑓𝑉 (𝑥) = 𝑦 iff ∃𝑡0.∀𝑡 ≥ 𝑡0. 𝑔𝑡(𝑥) = 𝑦 ]
(2) 𝑓𝑉 (𝑥) = ⊥ iff ∀𝑦. 𝑓𝑉 (𝑥) ̸= 𝑦
(3) ∀𝑡, 𝑦. [ 𝑔𝑡(𝑥) = 𝑦 iff 𝑉 on 𝑒𝑛𝑐(𝑥) has 𝑒𝑛𝑐(𝑦) or 𝑒𝑛𝑐(𝑦) $ as output after 𝑡 moves ]
Clearly, for any well-formed input ⟨𝑀𝑑, 𝑤𝑑⟩, ADM 𝑉 prints a finite number 𝑛 of symbols on
its output tape, with 𝑛 > 0. Therefore, condition (2) does not apply in the intended case; i.e.,
when 𝑥 is such that 𝑒𝑛𝑐(𝑥) = ⟨𝑀𝑑, 𝑤𝑑⟩ for some 𝑑 ≥ 1. Expressing (1) in terms of (3) results
in the following property: for all intended 𝑥 ∈ N, and all 𝑦 ∈ N, we have that: 𝑓𝑉 (𝑥) = 𝑦 iff
∃𝑡0.∀𝑡 ≥ 𝑡0. 𝑉 on 𝑒𝑛𝑐(𝑥) has 𝑒𝑛𝑐(𝑦) or 𝑒𝑛𝑐(𝑦) $ as output after 𝑡 moves. In more plain English:
function 𝑓𝑉 maps any natural number 𝑥 representing a DTM 𝑀𝑑 and input 𝑤𝑑 onto a number 𝑦,
where 𝑒𝑛𝑐(𝑦) ∈ {0, 00, 01} is different from any output produced by 𝑀𝑑 on 𝑤𝑑.

We now come to part (ii) of the theorem: we show that function 𝑓𝑉 cannot be computed in
the limit by any DTM. Suppose that some DTM 𝑉 computes 𝑓𝑉 :: N → N⊥ in the limit. By
Definition 4, we have, for ∀𝑥:
(a) ∀𝑦. [ 𝑓𝑉 (𝑥) = 𝑦 iff DTM 𝑉 on 𝑒𝑛𝑐(𝑥) halts with output 𝑒𝑛𝑐(𝑦) ]
(b) 𝑓𝑉 (𝑥) = ⊥ iff DTM 𝑉 on 𝑒𝑛𝑐(𝑥) does not halt.
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We focus on (a); that is, we need only consider natural numbers 𝑥 for which 𝑒𝑛𝑐(𝑥) = ⟨𝑀𝑑, 𝑤𝑑⟩
in order to obtain our contradiction. From (a) we obtain the following: 𝑓𝑉 (𝑥) = 𝑦 iff DTM 𝑉
on ⟨𝑀𝑑, 𝑤𝑑⟩, with 𝑒𝑛𝑐(𝑥) = ⟨𝑀𝑑, 𝑤𝑑⟩, halts with output 𝑒𝑛𝑐(𝑦) ∈ {0, 00, 01}, which is different
from the output produced by 𝑀𝑑 on 𝑤𝑑. But, no DTM can in general decide for input ⟨𝑀𝑑, 𝑤𝑑⟩
whether 𝑀𝑑 on 𝑤𝑑 terminates or not. Yet, DTM 𝑉 needs this information to output a string
that 𝑀𝑑 on 𝑤𝑑 does not produce itself.

Corollary 26. If the model fidelity of ADM’s is at least as good as that of DTM’s, then the
notion of algorithm is not fully captured by DTM’s.

Remark. The “model fidelity” refers to computing in the real world, and to human computing in
particular. Arguments supporting the corollary’s precondition are provided in Sections 1 and 11.

Definition 27. Let 𝑆 be a set of natural numbers. The characteristic function of 𝑆, denoted
𝜒𝑆 , maps natural numbers to 0 or 1 as follows:
𝜒𝑆(𝑛) = 0 if 𝑛 /∈ 𝑆
𝜒𝑆(𝑛) = 1 if 𝑛 ∈ 𝑆
A generalized characteristic function of 𝑆, denoted 𝜒̃𝑆 , maps natural numbers to natural numbers
with the proviso that:
𝜒̃𝑆(𝑛) = 0 iff 𝑛 /∈ 𝑆

Remark. A generalized characteristic function 𝜒̃𝑆 is not necessarily a characteristic function 𝜒𝑆 ,
for any fixed set 𝑆 under consideration.

Corollary 28. Suppose number 0 is encoded with string 0, and some other number with string
0𝜎 and 𝜎 ̸= 𝜖. Then, for each computably enumerable set 𝑆, there is an ADM 𝑁 that computes a
generalized characteristic function 𝜒̃𝑆 in the limit.

Proof. Follows from (a) the construction of ADM 𝑉 in the proof of Theorem 25, and from (b) the
ability of an ADM to first compute 0, with 0 = 𝑒𝑛𝑐(0), and subsequently — if need be — to
print out a particular extension of 0. The latter, in turn, serves as the encoding of some number
𝑛 ̸= 0.

Theorem 29. There exists an ADM 𝐷 that generates a non c.e. set 𝐴.

Remark. The abbreviation “c.e.” stands for “computably enumerable,” and its definition is
assumed [32, Sec.7.7]. Metaphorically speaking we shall use the phrase “𝑐𝑒𝑙𝑙(𝑗, 𝑘) contains . . .” in
the proof below, instead of writing “𝑐𝑒𝑙𝑙(𝑗, 𝑘) denotes . . .”.

Proof. Consider an enumeration of input words 𝑤1, 𝑤2, . . ., and an enumeration of descriptions
of DTM’s 𝑀1, 𝑀2, . . .. The computation of DTM 𝑀𝑗 on input 𝑤𝑘 is either finite or infinite:
(a) In the finite case, let 𝑐𝑒𝑙𝑙(𝑗, 𝑘) contain 𝑀𝑗 ’s output word 𝑤′

𝑘 with regard to its computation
on input 𝑤𝑘.
(b) In the infinite case, let 𝑐𝑒𝑙𝑙(𝑗, 𝑘) contain 𝑒𝑛𝑐(⊥); that is, the empty string 𝜖.

We shall construct a diagonalizer, ADM 𝐷. The construction relies on dovetailing and proceeds
in stages 𝑖, with 𝑖 = 1, 2, . . . Diagonalizer 𝐷 will operate across the diagonal (𝑀1, 𝑤1), (𝑀2, 𝑤2),
. . . in order to provide the contents of the cells on its own a-diagonal (“antagonist diagonal”):
𝐷𝑐𝑒𝑙𝑙(1, 1), 𝐷𝑐𝑒𝑙𝑙(2, 2), . . . We will show, for any 𝑑 ≥ 1, that the contents of 𝐷𝑐𝑒𝑙𝑙(𝑑, 𝑑) will,
from some stage onward, be fixed and different from the contents of 𝑐𝑒𝑙𝑙(𝑑, 𝑑).

For any 𝑑 ≥ 1, Diagonalizer 𝐷 stores the word 0 in 𝐷𝑐𝑒𝑙𝑙(𝑑, 𝑑) when consulting this cell for
the first time.

Stage i. Diagonalizer 𝐷 uses ⟨𝑀1, 𝑤1⟩, ⟨𝑀2, 𝑤2⟩, . . ., ⟨𝑀𝑖−1, 𝑤𝑖−1⟩, and ⟨𝑀𝑖, 𝑤𝑖⟩ for, re-
spectively, 𝑖, 𝑖 − 1, . . ., 2, and 1 simulation moves in order to possibly modify the contents of
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𝐷𝑐𝑒𝑙𝑙(1, 1), 𝐷𝑐𝑒𝑙𝑙(2, 2), . . ., 𝐷𝑐𝑒𝑙𝑙(𝑖− 1, 𝑖− 1), and 𝐷𝑐𝑒𝑙𝑙(𝑖, 𝑖), respectively. Diagonalizer 𝐷 works
with ⟨𝑀𝑑, 𝑤𝑑⟩ and a budget of 𝑡 moves in the following manner. Like a universal Turing machine,
𝐷 simulates 𝑀𝑑 on input 𝑤𝑑 for 𝑡 moves. However, during this simulation 𝐷 distinguishes between
three cases:
(1) If 𝑀𝑑’s computation on input 𝑤𝑑 terminates with length 𝑝 < 𝑡,
then 𝐷 does not modify 𝐷𝑐𝑒𝑙𝑙(𝑑, 𝑑).
(2) If 𝑀𝑑’s computation on input 𝑤𝑑 has length 𝑝 > 𝑡,
then 𝐷 does not modify 𝐷𝑐𝑒𝑙𝑙(𝑑, 𝑑).
(3) If 𝑀𝑑’s computation on input 𝑤𝑑 terminates with length 𝑝 = 𝑡 and output 𝑤′

𝑑, then 𝐷 appends
0 or 1 to the contents of 𝐷𝑐𝑒𝑙𝑙(𝑑, 𝑑), so that 𝐷𝑐𝑒𝑙𝑙(𝑑, 𝑑) contains a word (00 or 01) different from
𝑤′

𝑑.
Analysis. Suppose 𝑀𝑑 on input 𝑤𝑑 does not halt. Then 𝑐𝑒𝑙𝑙(𝑑, 𝑑) contains 𝑒𝑛𝑐(⊥) of length

zero while 𝐷𝑐𝑒𝑙𝑙(𝑑, 𝑑) contains word 0 of length one. Suppose 𝑀𝑑 on input 𝑤𝑑 does halt with
output word 𝑤′

𝑑. Then 𝑐𝑒𝑙𝑙(𝑑, 𝑑) = 𝑤′
𝑑 ̸= 𝐷𝑐𝑒𝑙𝑙(𝑑, 𝑑) ∈ {00, 01} from some stage onward. The

conclusion is, that, for any 𝑑 ≥ 1, from some stage onward we have 𝑐𝑒𝑙𝑙(𝑑, 𝑑) ̸= 𝐷𝑐𝑒𝑙𝑙(𝑑, 𝑑).

Remark 30. A new form of enumerating a set 𝐴 of pairs ⟨𝑑, 𝑣⟩ follows from 𝐷’s construction in
the previous proof. ADM 𝐷 can be viewed as generating a set 𝐴 of natural numbers as follows:
𝐷 gradually puts each pair ⟨𝑑, 0⟩ for every natural number 𝑑 in set 𝐴 and can modify each pair,
albeit at most once and only by appending one bit to the second element in the pair to obtain
either ⟨𝑑, 00⟩ or ⟨𝑑, 01⟩. We have shown via diagonalization that no DTM generates set 𝐴; that
is, 𝐴 is not computably enumerable.

Remark 31. Infinitely many diagonalizers 𝐷,𝐷′, . . . can be concocted to prove Theorem 29 and
the forthcoming lemmas, resulting in oracle sets 𝐴,𝐴′, . . ., respectively. In the present article we
stick to ADM 𝐷 and its corresponding set 𝐴. Note, moreover, that (strictly speaking) ADM 𝐷
works with strings and set 𝐴 contains natural numbers.

7 From DTM’s vs. ADM’s to an Elaboration of ADM’s

From the previous sections it follows that DTM’s are computationally inferior to ADM’s. For,
indeed, every DTM-computable function is ADM computable (cf. Theorem 23), and there is an
ADM that generates oracle set 𝐴, which no DTM can generate (cf. Theorem 29). The question
remains, however, to what extent ADM’s are superior to DTM’s — a question that is addressed
in the next section by examining oracle set 𝐴 in greater detail. Set 𝐴 is formally defined in
Section 8.1 and subsequently analyzed in terms of halting problems (Section 8.2) and printing
problems (Section 8.3).

Theorems 39 and 43 are the two take-away messages of the next section. The first theorem
conveys ADM’s limited superiority over DTM’s: for, ADM’s do not have enough power to solve
the halting problem of Turing machines in its most general form (cf. the devil’s advocate in
Section 1.4). Leaving Turing machines aside, the ADM model is, just like any other model of
computation in classical computability theory, limited in terms of the functions it can implement.
Theorem 43 shows that ADM’s cannot solve their own printing problem.

8 Elaborating on ADM’s Computational Power

ADM 𝐷 in the proof of Theorem 29 provides a way to generate an oracle set 𝐴 which is not
computably enumerable. Note, in particular, that ADM 𝐷 can be viewed as generating words of
the form ⟨𝑑, 0⟩ with one possible rectification — i.e.,⟨𝑑, 00⟩ or ⟨𝑑, 01⟩ — provided a finite number
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of computational steps later. The focus now lies on set 𝐴, followed by a treatment of halting and
printing problems.

8.1 The Set 𝐴

Definition 32. 𝐴 = {⟨𝑑, 𝑣⟩ | (𝑃 holds or 𝑄 holds}, with:
𝑃 = “DTM 𝑀𝑑 on 𝑤𝑑 halts with output 𝑣𝑑 ̸= 𝑣 ∈ {00, 01}.”
𝑄 = “DTM 𝑀𝑑 on 𝑤𝑑 does not halt, 𝑣 = 0.”
Moreover, we have: ∀𝑑 ∈ N. ∃𝑥 ∈ {0, 00, 01} . ⟨𝑑, 𝑥⟩ ∈ 𝐴

Remark. Abuse of notation. We simply write ⟨𝑑, 𝑣⟩ instead of ⟨𝑀𝑑, 𝑣⟩, with 𝑑 ∈ N, 𝑣 ∈ Γ*, and
𝑀𝑑 a description in Σ* of the 𝑑-th DTM in a fixed, canonical enumeration. We often write “ADM
𝑁 on input ⟨𝑑, 𝑣⟩” instead of “ADM 𝑁 on input 𝑒𝑛𝑐 (⟨𝑑, 𝑛𝑣⟩),” where 𝑛𝑣 is the number equivalent
of string 𝑣.

In terms of language recognition, we know that 𝐴 = 𝐿(𝑁𝐴), for some ADM 𝑁𝐴. We now
analyze ADM 𝑁𝐴 in detail. 𝑁𝐴 on input ⟨𝑑, 𝑣⟩ prints 0 and subsequently does the following:

1. If 𝑣 = 0, then 𝑁𝐴 runs 𝑀𝑑 on 𝑤𝑑.

∙ If 𝑀𝑑 on 𝑤𝑑 does not halt, then neither will 𝑁𝐴 with convergence.

∙ If 𝑀𝑑 on 𝑤𝑑 halts, then 𝑁𝐴 prints 0 forever; i.e., nonconvergence.

2. If 𝑣 ∈ {00, 01}, then 𝑀𝑑 on 𝑤𝑑 has to halt in order for ⟨𝑑, 𝑣⟩ to be in 𝐴. ADM 𝑁𝐴 runs
𝑀𝑑 on 𝑤𝑑 and during this simulation 𝑁𝐴 prints 0 on every computational step.

∙ If 𝑀𝑑 on 𝑤𝑑 does not halt, then neither will 𝑁𝐴 and in a nonconvergent manner, as
desired.

∙ If 𝑀𝑑 on 𝑤𝑑 halts with output = 𝑣, then 𝑁𝐴 prints 0 forever.

∙ If 𝑀𝑑 on 𝑤𝑑 halts with output ̸= 𝑣, then 𝑁𝐴 prints $ and halts.

3. If neither 1. nor 2. apply, then 𝑁𝐴 demonstrates nonconvergent behavior.

8.2 Halting Problems

Definition 33. Halting sets:
𝐻 = {𝑑 | DTM 𝑀𝑑 on 𝑤𝑑 halts}
𝐻 ′ = {𝑑 | ADM 𝑁𝑑 on 𝑤𝑑 halts}

Lemma 34. There is a DTM 𝑀 with oracle 𝐻 that computes 𝜒𝐴 in the limit.

Proof. We construct DTM 𝑀 with oracle 𝐻, denoted 𝑀𝐻 , on input ⟨𝑑, 𝑣⟩, such that:
𝑀𝐻 on ⟨𝑑, 𝑣⟩ halts with output 𝑒𝑛𝑐(1) iff ⟨𝑑, 𝑣⟩ ∈ 𝐴.
𝑀𝐻 on ⟨𝑑, 𝑣⟩ halts with output 𝑒𝑛𝑐(0) iff ⟨𝑑, 𝑣⟩ /∈ 𝐴.

Now, ⟨𝑑, 𝑣⟩ ∈ 𝐴 iff either (a) or (b) holds, with:
(a) 𝑀𝑑 on 𝑤𝑑 halts with output 𝑣𝑑 ̸= 𝑣 ∈ {00, 01}.
(b) 𝑀𝑑 on 𝑤𝑑 does not halt with 𝑣 = 0.

𝑀𝐻 uses oracle 𝐻 to check whether 𝑑 ∈ 𝐻. That is, 𝑀𝐻 checks whether 𝑀𝑑 on 𝑤𝑑 halts,
resulting in two cases.
Case 1: 𝑀𝑑 on 𝑤𝑑 halts.
Then 𝑀𝐻 simulates 𝑀𝑑 on 𝑤𝑑.
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𝑀𝐻 then checks if 𝑀𝑑 outputs something ̸= 𝑣 ∈ {00, 01}.
If so, then 𝑀𝐻 halts with output 𝑒𝑛𝑐(1).
Else, 𝑀𝐻 halts with output 𝑒𝑛𝑐(0).
Case 2: 𝑀𝑑 on 𝑤𝑑 does not halt.
Then 𝑀𝐻 checks if 𝑣 = 0.
If so, then 𝑀𝐻 halts with output 𝑒𝑛𝑐(1).
Else, 𝑀𝐻 halts with output 𝑒𝑛𝑐(0).

Lemma 35. There is a DTM 𝑀 with oracle 𝐴 that computes 𝜒𝐻 in the limit.

Proof. Construct DTM 𝑀 with oracle 𝐴, denoted 𝑀𝐴, as follows.
We want 𝑀𝐴 on input 𝑑 to:
(a) halt with output 𝑒𝑛𝑐(1) iff 𝜒𝐻(𝑑) = 1.
(b) halt with output 𝑒𝑛𝑐(0) iff 𝜒𝐻(𝑑) = 0.

That is:
𝑀𝐴 on 𝑑 halts with output 𝑒𝑛𝑐(1) iff 𝑀𝑑 on 𝑤𝑑 halts.
𝑀𝐴 on 𝑑 halts with output 𝑒𝑛𝑐(0) iff 𝑀𝑑 on 𝑤𝑑 does not halt.

So, 𝑀𝐴 checks if ⟨𝑑, 0⟩ ∈ 𝐴.
If not so, then 𝑀𝑑 on 𝑤𝑑 halts. Then, 𝑀𝐴 halts with output 𝑒𝑛𝑐(1).
If so, then 𝑀𝑑 on 𝑤𝑑 does not halt. Then, 𝑀𝐴 halts with output 𝑒𝑛𝑐(0).

Remark 36. In the previous proof we have implicitly relied on a trivial lemma: 𝑀𝑑 on 𝑤𝑑 does
not halt iff ⟨𝑑, 0⟩ ∈ 𝐴.

Lemma 37. If 𝑒𝑛𝑐(0) ⊀ 𝑒𝑛𝑐(1) and 𝑒𝑛𝑐(1) ⊀ 𝑒𝑛𝑐(0), then no ADM computes 𝜒𝐻 in the limit.

Proof. Suppose some ADM 𝑁 computes 𝜒𝐻 in the limit. Then 𝑁 implements a converging
sequence 𝑆 :: 𝑔1, 𝑔2, 𝑔3, . . . , 𝜒𝐻 . Then, for all 𝑥 ∈ N:
𝜒𝐻(𝑥) = 1
iff 𝑁 on 𝑒𝑛𝑐(𝑥) has 𝑒𝑛𝑐(1) or 𝑒𝑛𝑐(1)$ as output from some point in time onward.
𝜒𝐻(𝑥) = 0
iff 𝑁 on 𝑒𝑛𝑐(𝑥) has 𝑒𝑛𝑐(0) or 𝑒𝑛𝑐(0)$ as output from some point in time onward.

That is, for all 𝑥 ∈ N:
DTM 𝑀𝑥 on 𝑤𝑥 halts
iff 𝑁 on 𝑒𝑛𝑐(𝑥) has 𝑒𝑛𝑐(1) or 𝑒𝑛𝑐(1)$ as output from some point in time onward.
DTM 𝑀𝑥 on 𝑤𝑥 does not halt
iff 𝑁 on 𝑒𝑛𝑐(𝑥) has 𝑒𝑛𝑐(0) or 𝑒𝑛𝑐(0)$ as output from some point in time onward.

Thus, 𝑁 on any 𝑒𝑛𝑐(𝑥) will have as output, from some point 𝑡* onward:
either 𝑒𝑛𝑐(1) optionally followed with $,
or 𝑒𝑛𝑐(0) optionally followed with $.

Now, take ADM 𝑁* to be both a “DTM in disguise” and the “antagonist” of 𝑁 . That is,
ADM 𝑁* only provides output in one sweep, immediately before halting: ADM 𝑁* is DTM 𝑁*.
Antagonist 𝑁* will, on input 𝑒𝑛𝑐(𝑥), use its work tape to simulate 𝑁 on 𝑒𝑛𝑐(𝑥) such that:
(1) When 𝑁 outputs either 𝑒𝑛𝑐(1) or 𝑒𝑛𝑐(1)$, then 𝑁* does not halt.
(2) When 𝑁 outputs either 𝑒𝑛𝑐(0) or 𝑒𝑛𝑐(0)$, then 𝑁* prints 0$ and halts.
Antagonist 𝑁* has the capability to distinguish between (1) and (2) due to the precondition
stated in the present Lemma.

But, 𝑁* is in the canonical enumeration of DTM’s 𝑀1, 𝑀2, . . . So, we have 𝑁* = 𝑀𝑖, for
some 𝑖 ≥ 1. But, then, 𝑀𝑖 on input 𝑤𝑖 will:
(1) halt
iff 𝑁 on 𝑤𝑖 has 𝑒𝑛𝑐(1) or 𝑒𝑛𝑐(1)$ as output from some point onward
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iff 𝑁* on 𝑤𝑖 does not halt
iff 𝑀𝑖 on 𝑤𝑖 does not halt
(2) not halt
iff 𝑁 on 𝑤𝑖 has 𝑒𝑛𝑐(0) or 𝑒𝑛𝑐(0)$ as output from some point onward
iff . . .
iff 𝑀𝑖 on 𝑤𝑖 halts

These results lead to the desired contradiction.

Corollary 38. If 𝑒𝑛𝑐(0) ⊀ 𝑒𝑛𝑐(1) and 𝑒𝑛𝑐(1) ⊀ 𝑒𝑛𝑐(0), then no ADM computes 𝜒𝐻′ in the
limit.

Theorem 39. DTM’s are computationally inferior to ADM’s which, in turn, are computationally
inferior to DTM’s with oracle set 𝐴 or, equivalently, oracle set 𝐻.

Proof. Follows immediately from the previous results.

Remark 40. The phrase “computationally inferior to” incorporates the choice on how to encode
natural numbers. The phrase does not solely refer to partially computable functions in the
abstract; that is, to treatments in which the encoding function 𝑒𝑛𝑐 is swept under the rug.

8.3 Printing Problems

Definition 41. Printing set 𝑃 = {𝑑 | ADM 𝑁𝑑 on 𝑤𝑑 prints finite output ̸= 𝜖}

Lemma 42. If 𝑒𝑛𝑐(0) ⊀ 𝑒𝑛𝑐(1) and 𝑒𝑛𝑐(1) ⊀ 𝑒𝑛𝑐(0), then no ADM computes 𝜒𝑃 in the limit.

Proof. Suppose some ADM 𝑁 computes 𝜒𝑃 in the limit. Then 𝑁 implements a converging
sequence 𝑆 :: 𝑔1, 𝑔2, 𝑔3, . . . , 𝜒𝑃 . Then, for all 𝑥 ∈ N:
(1a) 𝜒𝑃 (𝑥) = 1 iff ∃𝑡0.∀𝑡 ≥ 𝑡0. 𝑔𝑡(𝑥) = 1
(1b) 𝜒𝑃 (𝑥) = 0 iff ∃𝑡0.∀𝑡 ≥ 𝑡0. 𝑔𝑡(𝑥) = 0
(2) 𝜒𝑃 (𝑥) ̸= ⊥, because 𝜒𝑃 is a total function
(3) ∀𝑡, 𝑦. [ 𝑔𝑡(𝑥) = 𝑦 iff 𝑁 on 𝑒𝑛𝑐(𝑥) has 𝑒𝑛𝑐(𝑦) or 𝑒𝑛𝑐(𝑦) $ as output after 𝑡 moves ]

Then, for all 𝑥 ∈ N:
(a) ADM 𝑁𝑥 on 𝑤𝑥 prints finite output ̸= 𝜖
iff 𝑁 on 𝑒𝑛𝑐(𝑥) has 𝑒𝑛𝑐(1) or 𝑒𝑛𝑐(1)$ as output from some point onward
(b) ADM 𝑁𝑥 on 𝑤𝑥 prints 𝜖 or infinite output
iff 𝑁 on 𝑒𝑛𝑐(𝑥) has 𝑒𝑛𝑐(0) or 𝑒𝑛𝑐(0)$ as output from some point onward

Thus, 𝑁 on any 𝑒𝑛𝑐(𝑥) will have as output, from some point 𝑡* onward:
either 𝑒𝑛𝑐(1) optionally followed with $,
or 𝑒𝑛𝑐(0) optionally followed with $.

Now, take ADM 𝑁* to be the “antagonist” of 𝑁 . That is, Antagonist 𝑁* will, on input
𝑒𝑛𝑐(𝑥), use its work tape to simulate 𝑁 on 𝑒𝑛𝑐(𝑥) such that:
(1) When 𝑁 outputs either 𝑒𝑛𝑐(1) or 𝑒𝑛𝑐(1)$, 𝑁* prints infinitely many symbols.
(2) When 𝑁 outputs either 𝑒𝑛𝑐(0) or 𝑒𝑛𝑐(0)$, 𝑁* prints 0$ and halts.
Antagonist 𝑁* has the capability to distinguish between (1) and (2) due to the precondition
stated in the present Lemma.

But, 𝑁* is in the canonical enumeration of ADM’s 𝑁1, 𝑁2, . . . So, we have 𝑁* = 𝑁𝑖, for
some 𝑖 ≥ 1. But, then, 𝑁𝑖 on input 𝑤𝑖 will:
(1) Print infinitely many symbols iff 𝑁𝑖 on 𝑤𝑖 prints finite output ̸= 𝜖.
(2) Print 0$ and halt iff 𝑁𝑖 on 𝑤𝑖 prints 𝜖 or infinite output.

These results lead to the desired contradiction.
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We can strengthen the previous lemma:

Theorem 43. No ADM computes 𝜒𝑃 in the limit.

Proof. We refer to ADM 𝑁 and the Antagonist 𝑁* in the previous proof, and distinguish between
three cases.
Case 1: 𝑒𝑛𝑐(0) ⊀ 𝑒𝑛𝑐(1) and 𝑒𝑛𝑐(1) ⊀ 𝑒𝑛𝑐(0). Then the result follows from the previous lemma.
Case 2: 𝑒𝑛𝑐(0) ≺ 𝑒𝑛𝑐(1). Then: 𝑒𝑛𝑐(1) = 𝑒𝑛𝑐(0)𝜎 for some nonempty string 𝜎. Let Antagonist
𝑁*, on input 𝑒𝑛𝑐(𝑥), use its work tape to simulate 𝑁 on 𝑒𝑛𝑐(𝑥), such that:
(1) When 𝑁 outputs 𝑒𝑛𝑐(0), 𝑁* prints 0 and continues the simulation, such that:
(2a) If 𝑁 outputs $, then 𝑁* prints $ and halts.
(2b) If 𝑁 outputs 𝜎, then 𝑁* prints infinitely many symbols.
Case 3: 𝑒𝑛𝑐(1) ≺ 𝑒𝑛𝑐(0). Then: 𝑒𝑛𝑐(0) = 𝑒𝑛𝑐(1)𝜎 for some nonempty string 𝜎. Let Antagonist
𝑁*, on input 𝑒𝑛𝑐(𝑥), use its work tape to simulate 𝑁 on 𝑒𝑛𝑐(𝑥), such that:
(1) When 𝑁 outputs 𝑒𝑛𝑐(1), 𝑁* continues the simulation and prints 0 on every computation step,
such that:
(2a) If 𝑁 outputs $, then 𝑁* prints infinitely many more symbols.
(2b) If 𝑁 outputs 𝜎, then 𝑁* prints $ and halts.

9 From Naturals to Reals

All previous sections are about machines implementing functions on the naturals (e.g., DTM’s,
ADM’s, BDM’s, CDM’s). In contrast, the next section — which can be skipped by casual readers
— discusses machines implementing functions on the reals (e.g., Turing’s 1936 machines, AdM’s,
BdM’s, CdM’s). To be more precise, the objective will now be to scrutinize Turing’s 1936 paper
itself; that is, to apply a similar kind of reasoning as in the previous sections but this time with
regard to Turing’s 1936 machines. Specifically, I shall charitably model Turing’s 1936 automatic
machines with AdM’s and then prove that AdM’s are computationally inferior to BdM’s, which,
in turn, are inferior to CdM’s, etc. This take-away message is conveyed formally in Corollary 60.

10 A Retrospective On Turing’s 1936 Machines

Coming to Turing’s 1936 paper [56], I build on the account of Charles Petzold [47], whom, in turn,
has relied on the analysis and corrections provided by Emil Post [48] and Donald Davies [15].

Each of Turing’s 1936 automatic machines starts with a blank tape, and, if all goes well,
computes an infinitely long sequence of binary digits, which, in turn, represent a real number
𝑧 ∈ R. Specifically, 𝑧 lies in between 0 and 1 — that is, 0 ≤ 𝑧 ≤ 1 — and we shall denote this as
follows: 𝑧 ∈ R01.

Storage-wise, Turing’s automatic machines only have a one-way infinite tape. In Petzold’s
words:

“Although the tape is theoretically infinite in both directions, the machines that
Turing describes in [his] paper require only that the tape extend infinitely towards
the right because that’s where the digits of the computable sequences are printed
[...]” [47, p.81]

With regard to this one-way infinite tape, the automatic machine in hand is expected to:

∙ Print output digits (0 or 1) from left to right on alternative (say, even-numbered) tape cells,
which we call numeric squares.
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– Turing called these 𝐹 -squares for figures.

– These cells are comparable to the cells constituting the second tape of an ADM; i.e.,
the output tape of an ADM.

∙ Print erasable scratch data on all other cells (i.e., the odd-numbered cells), which we call
non-numeric squares.

– Turing called these 𝐸-squares for erasable.

– These cells can be associated with the first tape of an ADM; i.e., the input and work
tape of an ADM.

The following comparison between Turing’s 1936 machines and Emil Post’s generalization is
important to note. In Petzold’s words:

“As the machine progressively computes the 0s and 1s, it prints them sequentially
from left to right. Every new figure that the machine computes is printed on the next
available blank numeric square. No numeric squares are skipped. These restrictions
are a collection of rules (some explicit and some implied) that Emil Post later called a
“Turing convention-machine,” [. . .] which is a little more restrictive than the generalized
“Turing Machine.” A Turing convention-machine never erases a numeric square, or
writes over an existing figure on a numeric square with a different figure.” [47, p.86]

Furthermore, Turing distinguished between two kinds of automatic machines:

∙ Circular machines never fill in more than a finite number of numeric squares.

∙ Circle-free machines do fill in, from left to right, infinitely many numeric squares.

It is the latter type of machine that is desirable because it prints infinitely many digits (of the
real number in hand). In Turing’s words:

“A number which is a description number of a circle-free machine will be called
a satisfactory machine. [. . .] it is shown that there can be no general process for
determining whether a given number is satisfactory or not.” [56, p.242]

Charitable reading of Turing’s 1936 paper leads the present author to view Turing’s 1936
automatic machine as equivalent to a 2-tape DTM, containing:

∙ One work tape, on which symbols 0, 1, and the blank 𝑏 can be printed and modified any
number of times.

∙ One output tape, on which digits 0 and 1 can only be printed from left to right.

These 2-tape DTM’s, which serve to compute real numbers, are nevertheless limited. To reveal
the limited power of these machines, variants of ADM’s and BDM’s, called AdM’s and BdM’s,
have to be introduced first.

10.1 AdM’s

Similar to an ADM, an AdM contains:

∙ One input and work tape (containing symbols 0, 1, or the blank 𝑏).
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∙ One output tape, on which digits 0 and 1 can be printed from left to right. Each digit is
observable to the outside world from the moment it is printed.

While an ADM computes a function 𝑓 :: N → N⊥ in the limit, an AdM computes a function
𝑓 :: N→ R01

⊥ in the limit.

Remark 44. Strings are finite in length, sequences are infinitely long. We extend the notion of
“prefix” from strings to strings and sequences. Again, we denote ⪯ for “prefix” and ≺ for “strict
prefix.” We also extend the concept of an injective encoding function 𝑒𝑛𝑐 from natural numbers
to both natural numbers 𝑥 and real numbers 𝑧. The encoding of 𝑥, denoted 𝑒𝑛𝑐(𝑥), is a string.
The encoding of 𝑧, denoted 𝑒𝑛𝑐(𝑧), is a sequence.

Remark. Not any standard encoding function 𝑒𝑛𝑐 will do. For example, if some AdM 𝑁 spits out
the digits 001 . . . (from left to right), then we want 𝑒𝑛𝑐(𝑛1) = 0, 𝑒𝑛𝑐(𝑛2) = 00, and 𝑒𝑛𝑐(𝑛3) = 001,
for some numbers 𝑛1, 𝑛2, 𝑛3 ∈ N. More to the point, the common binary representation — and
other standard representations — of real numbers will not do, as Turing, himself, came to conclude
in 1937. Guido Gherardi provides an excellent account in his 2011 article [24].

Definition 45. We say that AdM 𝑁 (mathematically) implements a converging sequence 𝑆 ::
𝑔1, 𝑔2, 𝑔3, . . . , 𝑓 , with functions 𝑔𝑖 from N to N, and limit function 𝑓 from N to R01

⊥ , when the
following three conditions hold, for all 𝑥 ∈ N:
(1) ∀𝑧 ∈ R01. [ 𝑓(𝑥) = 𝑧 iff ∀𝑡1.∃𝑡2 > 𝑡1. 𝑒𝑛𝑐 (𝑔𝑡1(𝑥)) ≺ 𝑒𝑛𝑐 (𝑔𝑡2(𝑥)) ≺ 𝑒𝑛𝑐 (𝑧) ]
(2) 𝑓(𝑥) = ⊥ iff ∀𝑧 ∈ R01.𝑓(𝑥) ̸= 𝑧
(3) ∀𝑡, 𝑦. [ 𝑔𝑡(𝑥) = 𝑦 iff 𝑁 on 𝑒𝑛𝑐(𝑥) has 𝑒𝑛𝑐(𝑦) or 𝑒𝑛𝑐(𝑦)$ as output after 𝑡 moves ]

Definition 46. We say that AdM 𝑁 computes function 𝑓 :: N → R01
⊥ in the limit, when

𝑁 implements a converging sequence 𝑆 :: 𝑔1, 𝑔2, 𝑔3, . . . , 𝑓 of functions 𝑔1, 𝑔2, 𝑔3, . . . with limit
function 𝑓 .

Remark 47. What would it mean if some AdM 𝑁 computes a function 𝑓 :: N→ R01 in the limit
instead of 𝑓 :: N→ R01

⊥ ? Then 𝑁 prints in the limit infinitely many output symbols on input
𝑒𝑛𝑐(𝑥), for any 𝑥 ∈ N. Indeed, 𝑓 :: N → R01 is merely a special case of 𝑓 :: N → R01

⊥ . Note,
however, that, since each of Turing’s 1936 automatic machines 𝑀 is supposed to correspond to an
AdM 𝑁 , and since each 𝑀 doesn’t accept input, we will primarily be interested in AdM’s 𝑁 that
do not use their input; that is, 𝑓𝑁 (𝑥) = 𝑓𝑁 (𝑥′), for ∀𝑥, 𝑥′ ∈ N. See Definition 50 in particular.

Definition 48. We say that two AdM’s 𝑁 and 𝑁 ′ are functionally equivalent (with regard to
function 𝑓 :: N→ R01

⊥ ) when 𝑁 implements some converging sequence 𝑆 :: 𝑔1, 𝑔2, 𝑔3, . . . , 𝑓 and
𝑁 ′ implements some converging sequence 𝑆′ :: 𝑔′1, 𝑔

′
2, 𝑔

′
3, . . . , 𝑓 ’, with 𝑓 = 𝑓 ′.

Lemma 49. Given two converging sequences (i.e., of functions from N to N, with a limit function
from N to R01

⊥ ), called 𝑆 and 𝑆′, and some AdM 𝑁 that implements both 𝑆 and 𝑆′. Then 𝑆 ≡ 𝑆′.

Proof. Consider an arbitrary AdM 𝑁 that implements both sequences:
𝑆 :: 𝑔1, 𝑔2, 𝑔3, . . . , 𝑓 and 𝑆′ :: 𝑔′1, 𝑔

′
2, 𝑔

′
3, . . . , 𝑓

′.
Suppose it is not the case that 𝑆 ≡ 𝑆′.

A first possibility is that 𝑓 ̸= 𝑓 ′; i.e., there exists a natural number 𝑥 for which 𝑓(𝑥) ̸= 𝑓 ′(𝑥).
Without loss of generality, 𝑓(𝑥) = 𝑧 ∈ R01. Then, by Definition 45, ∀𝑡1.∃𝑡2 > 𝑡1. 𝑒𝑛𝑐 (𝑔𝑡1(𝑥)) ≺
𝑒𝑛𝑐 (𝑔𝑡2(𝑥)) ≺ 𝑒𝑛𝑐 (𝑧). We distinguish between two cases, each case results (non trivially) in a
contradiction. (Details are omitted.)
Case 1: 𝑓 ′(𝑥) = 𝑧′ ∈ R, with 𝑧′ ̸= 𝑧. Then, by Definition 45,
∀𝑡′1.∃𝑡′2 > 𝑡′1. 𝑒𝑛𝑐

(︀
𝑔𝑡′1(𝑥)

)︀
≺ 𝑒𝑛𝑐

(︀
𝑔𝑡′2(𝑥)

)︀
≺ 𝑒𝑛𝑐 (𝑧′).

Case 2: 𝑓 ′(𝑥) = ⊥. Then, by Definition 45,
∃𝑡′1.∀𝑡′2 > 𝑡′1. 𝑒𝑛𝑐

(︀
𝑔𝑡′1(𝑥)

)︀
⊀ 𝑒𝑛𝑐

(︀
𝑔𝑡′2(𝑥)

)︀
or 𝑒𝑛𝑐

(︀
𝑔𝑡′2(𝑥)

)︀
⊀ 𝑒𝑛𝑐 (𝑧).
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A second possibility is that 𝑔𝑖 ≠ 𝑔′𝑖, for some 𝑖 ≥ 1. This means, that, for a specific 𝑥 ∈ N, we
have: 𝑦 = 𝑔𝑖(𝑥) ̸= 𝑔′𝑖(𝑥) = 𝑦′, with 𝑦, 𝑦′ ∈ N. On the one hand, from Definition 45 we have: 𝑁 on
𝑒𝑛𝑐(𝑥) has 𝑒𝑛𝑐(𝑦) or 𝑒𝑛𝑐(𝑦) $ as output after 𝑖 moves. On the other hand, from Definition 45 we
have: 𝑁 on 𝑒𝑛𝑐(𝑥) has 𝑒𝑛𝑐(𝑦′) or 𝑒𝑛𝑐(𝑦′) $ as output after 𝑖 moves. But, 𝑒𝑛𝑐(𝑦) differs both from
𝑒𝑛𝑐(𝑦′) and 𝑒𝑛𝑐(𝑦′) $. Likewise, 𝑒𝑛𝑐(𝑦) $ differs both from 𝑒𝑛𝑐(𝑦′) and 𝑒𝑛𝑐(𝑦′) $. So we have our
desired contradiction.

The conclusion is that 𝑆 ≡ 𝑆′.

Definition 50. We say that any one of Turing’s 1936 circle-free machines 𝑀 and any AdM 𝑁
are output equivalent when 𝑀 computes 𝑧 ∈ R01 in the limit and 𝑁 computes 𝑓 in the limit,
with 𝑓(𝑥) = 𝑧, for ∀𝑥 ∈ N and some function 𝑓 :: N→ R01

⊥ .

Theorem 51. Each real number 𝑧 that is computable with one of Turing’s 1936 circle-free
machines is also AdM computable in the limit.

Remark 52. Proof omitted. The only major conceptual difference between Turing’s 1936 automatic
machines and AdM’s is that the latter machines provide more freedom with regard to output:
any finite prefix of the final, infinite output of an AdM is, from some moment in time and onward,
observable to the outside world.

To diagonalize out of the class of AdM-computable functions (cf. Theorem 55), we shall, in
the forthcoming exposition, extend the AdM concept to that of a BdM.

10.2 BdM’s

BdM’s are slightly extended AdM’s in that they can both prepend and append bits to their
output, while AdM’s can only append. Just like an AdM, a BdM has:

∙ A one-way, left-to-right infinite tape that serves both as input and work tape; this tape is
also called the first tape.

∙ A one-way, left-to-right infinite tape that serves for appending digits 0 and 1 to the output;
this tape is also called the second tape.

Unlike an AdM, a BdM also has:

∙ A one-way, left-to-right infinite tape that serves for prepending digits 0 and 1 to the output;
this tape is also called the third tape.

The inclusion of the third tape requires an extension of the way in which encoding function 𝑒𝑛𝑐
is used:

∙ The encoding of input 𝑥, denoted 𝑒𝑛𝑐(𝑥), is placed on BdM 𝑁 ’s first tape.

∙ After some 𝑡 moves, BdM 𝑁 has computed a natural number 𝑦, with 𝑒𝑛𝑐(𝑦) = 𝜎1 . . . 𝜎𝑙𝜎𝑙+1 . . . 𝜎𝑛

and 1 ≤ 𝑙 ≤ 𝑛, such that:

– 𝑁 ’s second tape contains, from left to right, the string 𝜎𝑙+1 . . . 𝜎𝑛

– 𝑁 ’s third tape contains, from left to right, the string 𝜎1 . . . 𝜎𝑙

To recapitulate, prepending the string on the third tape (𝜎1 . . . 𝜎𝑙) to the string on the second
tape (𝜎𝑙+1 . . . 𝜎𝑛), results in the complete output 𝑒𝑛𝑐(𝑦) = 𝜎1 . . . 𝜎𝑛 that has been computed by
𝑁 after the aforementioned 𝑡 moves.
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Definition 53. We say that BdM 𝑁 (mathematically) implements a converging sequence 𝑆 ::
𝑔1, 𝑔2, 𝑔3, . . . , 𝑓 , with functions 𝑔𝑖 from N to N, and limit function 𝑓 from N to R01

⊥ , when the
following three conditions hold, for all 𝑥 ∈ N:
(1) ∀𝑧 ∈ R01. [ 𝑓(𝑥) = 𝑧 iff ∀𝑡1.∃𝑡2 > 𝑡1. 𝑒𝑛𝑐 (𝑔𝑡1(𝑥)) ≺ 𝑒𝑛𝑐 (𝑔𝑡2(𝑥)) ≺ 𝑒𝑛𝑐 (𝑧) ]
(2) 𝑓(𝑥) = ⊥ iff ∀𝑧 ∈ R01.𝑓(𝑥) ̸= 𝑧
(3) ∀𝑡, 𝑦. [ 𝑔𝑡(𝑥) = 𝑦 iff 𝑁 on 𝑒𝑛𝑐(𝑥) has 𝑒𝑛𝑐(𝑦) or 𝑒𝑛𝑐(𝑦)$ as output after 𝑡 moves ]

We say that BdM 𝑁 computes function 𝑓 :: N → R01
⊥ in the limit, when 𝑁 implements a

converging sequence 𝑆 :: 𝑔1, 𝑔2, 𝑔3, . . . , 𝑓 of functions 𝑔1, 𝑔2, 𝑔3, . . . with limit function 𝑓 .

Theorem 54. Each function 𝑓 :: N→ R01
⊥ that is AdM computable in the limit, is also BdM

computable in the limit.

Proof. Trivial.

Theorem 55. There is a function 𝑓𝑉 :: N→ R01
⊥ that (i) some BdM 𝑉 computes in the limit,

and (ii) no AdM computes in the limit.

Proof. Starting with part (i) of the theorem, we construct BdM 𝑉 as follows. 𝑉 , on input 𝑤, first
checks whether 𝑤 is ⟨𝑀𝑑, 𝑤𝑑⟩ for some 𝑑 ≥ 1, with AdM 𝑀𝑑 and input word 𝑤𝑑. If this check
does not pass, then 𝑉 prints $ and halts. Else, 𝑉 on input ⟨𝑀𝑑, 𝑤𝑑⟩ goes through the following
stages.
Stage 1: 𝑉 prints 0 on its second tape. 𝑉 simulates 𝑀𝑑 on 𝑤𝑑 and waits for 𝑀𝑑 to print its first
bit on its second tape. While waiting, 𝑉 prints 0 on its second tape on every move.
+ If 𝑀𝑑 prints 1 on its second tape,
then 𝑉 prints 1 on its second tape, and goes to Stage 2.
+ If 𝑀𝑑 prints 0 on its second tape,
then 𝑉 prints 1 on its third tape and 0 on its second tape, and goes to Stage 2.
Stage 𝑖 > 1: 𝑉 continues simulating 𝑀𝑑 on 𝑤𝑑 and waits for 𝑀𝑑 to print its 𝑖-th bit on its second
tape. While waiting, 𝑉 prints 0 on its second tape on every move. If 𝑀𝑑 prints bit 𝜎 on its
second tape, then 𝑉 prints 𝜎 on its second tape, and goes to Stage 𝑖 + 1.
Termination: If the simulation of 𝑀𝑑 on 𝑤𝑑 terminates, then 𝑉 prints 0 infinitely many times on
its second tape.

Analysis: Three cases can be distinguished:
Case 1: 𝑀𝑑 on 𝑤𝑑 prints, in the limit, no more than a finite number of digits.
Then 𝑉 computes a sequence different from 𝑀𝑑’s output on 𝑤𝑑.
Case 2: 𝑀𝑑 on 𝑤𝑑 prints, in the limit, infinitely many digits 1𝜎2𝜎3 . . ..
Since 𝑉 computes a sequence starting with 0, 𝑉 ’s output differs from 𝑀𝑑’s output.
Case 3: 𝑀𝑑 on 𝑤𝑑 prints, in the limit, infinitely many digits 0𝜎2𝜎3 . . .
Since 𝑉 computes a sequence starting with 10, 𝑉 ’s output differs from 𝑀𝑑’s output.

We now come to part (ii) of the theorem. Suppose that some AdM 𝑉 computes 𝑓𝑉 :: N→ R01
⊥

in the limit. Then AdM 𝑉 prints, on ⟨𝑀𝑑, 𝑤𝑑⟩, precisely the same bits as BdM 𝑉 on ⟨𝑀𝑑, 𝑤𝑑⟩.
But, in order to accomplish this in the general case, 𝑉 needs to be able to flip its output bits,
which it cannot do by construction.

Corollary 56. Turing’s 1936 circle-free machines and AdM’s are computationally inferior to
BdM’s.

10.3 CdM’s

CdM’s are slightly extended BdM’s in that they have three output tapes instead of two. Just like
a BdM, a CdM has:
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∙ A one-way, left-to-right infinite tape that serves both as input and work tape; this tape is
also called the first tape.

∙ A one-way, left-to-right infinite tape that serves for appending digits 0 and 1 to the output;
this tape is also called the second tape.

∙ A one-way, left-to-right infinite tape that serves for prepending digits 0 and 1 to the output;
this tape is also called the third tape.

Unlike a BdM, a CdM also has:

∙ Another one-way, left-to-right infinite tape that serves for prepending digits 0 and 1 to the
output; this tape is also called the fourth tape.

The inclusion of the fourth tape requires an extension of the way in which encoding function 𝑒𝑛𝑐
is used:

∙ The encoding of input 𝑥, denoted 𝑒𝑛𝑐(𝑥), is placed on CdM 𝑁 ’s first tape.

∙ After some 𝑡 moves, CdM 𝑁 has computed a natural number 𝑦, with 𝑒𝑛𝑐(𝑦) = 𝜎1 . . . 𝜎𝑙 . . . 𝜎𝑚 . . . 𝜎𝑛

and 1 ≤ 𝑙,𝑚 ≤ 𝑛, such that:

– 𝑁 ’s second tape contains, from left to right, the string 𝜎𝑚+1 . . . 𝜎𝑛

– 𝑁 ’s third tape contains, from left to right, the string 𝜎𝑙+1 . . . 𝜎𝑚

– 𝑁 ’s fourth tape contains, from left to right, the string 𝜎1 . . . 𝜎𝑙

To recapitulate, prepending the string on the fourth tape (𝜎1 . . . 𝜎𝑙) to the string on the third
tape (𝜎𝑙+1 . . . 𝜎𝑚) to the string on the second tape (𝜎𝑚+1 . . . 𝜎𝑛), results in the complete output
𝑒𝑛𝑐(𝑦) = 𝜎1 . . . 𝜎𝑛 that has been computed by 𝑁 after the aforementioned 𝑡 moves.

Definition 57. We say that CdM 𝑁 (mathematically) implements a converging sequence 𝑆 ::
𝑔1, 𝑔2, 𝑔3, . . . , 𝑓 , with functions 𝑔𝑖 from N to N, and limit function 𝑓 from N to R01

⊥ , when the
following three conditions hold, for all 𝑥 ∈ N:
(1) ∀𝑧 ∈ R01. [ 𝑓(𝑥) = 𝑧 iff ∀𝑡1.∃𝑡2 > 𝑡1. 𝑒𝑛𝑐 (𝑔𝑡1(𝑥)) ≺ 𝑒𝑛𝑐 (𝑔𝑡2(𝑥)) ≺ 𝑒𝑛𝑐 (𝑧) ]
(2) 𝑓(𝑥) = ⊥ iff ∀𝑧 ∈ R01.𝑓(𝑥) ̸= 𝑧
(3) ∀𝑡, 𝑦. [ 𝑔𝑡(𝑥) = 𝑦 iff 𝑁 on 𝑒𝑛𝑐(𝑥) has 𝑒𝑛𝑐(𝑦) or 𝑒𝑛𝑐(𝑦)$ as output after 𝑡 moves ]

Theorem 58. Each function 𝑓 :: N→ R01
⊥ that is BdM computable in the limit, is also CdM

computable in the limit.

Proof. Trivial.

Theorem 59. There is a function 𝑓𝑉 :: N→ R01
⊥ that (i) some CdM 𝑉 computes in the limit,

and (ii) no BdM computes in the limit.

Proof. Starting with part (i) of the theorem, we construct CdM 𝑉 as follows. CdM 𝑉 , on input
𝑤, first checks whether 𝑤 is ⟨𝑀𝑑, 𝑤𝑑⟩ for some 𝑑 ≥ 1, with BdM 𝑀𝑑 and input word 𝑤𝑑. If this
check does not pass, then 𝑉 prints $ and halts. Else, 𝑉 on input ⟨𝑀𝑑, 𝑤𝑑⟩ goes through the
following stages.

Stage 1: 𝑉 prints 0 on its second tape. 𝑉 simulates 𝑀𝑑 on 𝑤𝑑 and waits for 𝑀𝑑 to print its
first bit on its third tape. On every move while waiting, 𝑉 prints 0 on its second tape, unless:
+ 𝑀𝑑 prints 1 on its second tape.
For then 𝑉 prints 1 on its second tape, and goes to Stage 1.
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+ 𝑀𝑑 prints 0 on its second tape.
For then 𝑉 prints 0 on its second tape and 1 on its fourth tape, and goes to Stage 1.
+ 𝑀𝑑 prints 1 on its third tape.
For then 𝑉 prints 1 on its third tape and 0 on its fourth tape, and goes to Stage 2.
+ 𝑀𝑑 prints 0 on its third tape.
For then 𝑉 prints 0 on its third tape and 1 on its fourth tape, and goes to Stage 2.
Stage 𝑖 > 1: 𝑉 continues simulating 𝑀𝑑 on 𝑤𝑑 and waits for 𝑀𝑑 to print its next bit on either its
second or third tape. While waiting, 𝑉 prints 0 on its second tape on every move. If 𝑀𝑑 prints
bit 𝜎 on its second (third) tape, then 𝑉 prints 𝜎 on its second (third) tape, and goes to Stage
𝑖 + 1.
Termination: If the simulation of 𝑀𝑑 on 𝑤𝑑 terminates, then 𝑉 prints 0 infinitely many times on
its second tape.

Analysis: Three cases can be distinguished:
Case 1: 𝑀𝑑 on 𝑤𝑑 prints, in the limit, no more than a finite number of digits.
Then 𝑉 computes a sequence different from 𝑀𝑑’s output on 𝑤𝑑.
Case 2: 𝑀𝑑 on 𝑤𝑑 prints, in the limit, infinitely many digits 1𝜎2𝜎3 . . ..
Since 𝑉 computes a sequence starting with 0, 𝑉 ’s output differs from 𝑀𝑑’s output.
Case 3: 𝑀𝑑 on 𝑤𝑑 prints, in the limit, infinitely many digits 0𝜎2𝜎3 . . .
Since 𝑉 computes a sequence starting with 1, 𝑉 ’s output differs from 𝑀𝑑’s output.

We now come to part (ii) of the theorem. Suppose that some BdM 𝑉 computes 𝑓𝑉 :: N→ R01
⊥

in the limit. Then BdM 𝑉 prints, on ⟨𝑀𝑑, 𝑤𝑑⟩, precisely the same bits as CdM 𝑉 on ⟨𝑀𝑑, 𝑤𝑑⟩.
But, in order to accomplish this in the general case, 𝑉 needs to be able to flip its output bits,
which it cannot do by construction.

Corollary 60. Turing’s 1936 automatic machines and AdM’s are computationally inferior to
BdM’s, which, in turn, are inferior to CdM’s.

11 Closing Remarks

Are ordinary Turing machines diamonds hidden in the depths of the universe, or are
they synthetic stones manufactured by man, yet so brilliant nevertheless that they
bedazzle those mathematicians who are already partially blinded by pride in their
own creations?

That’s my re-phrasing of Morris Kline’s original 1980 words, in which I have substituted “Turing
machines” for “mathematics”.7

A solution to the halting problem of Turing machines is not required in order to invalidate
the Church-Turing Thesis. There are infinitely many functions 𝑓 on the naturals (N) that are
not partially computable by Turing machines, yet for which knowledge of all (𝑥, 𝑓(𝑥)) pairs will
still not suffice to solve the halting problem (of Turing machines). I have presented the ADM
model of computation, and shown that there are ADM’s that implement infinitely many of the
aforementioned functions 𝑓 , even though no ADM can solve the halting problem (in its full

7Kline’s original phrasing:

“Is then mathematics a collection of diamonds hidden in the depths of the universe and gradually
unearthed, or is it a collection of synthetic stones manufactured by man, yet so brilliant nevertheless
that they bedazzle those mathematicians who are already partially blinded by pride in their own
creations?” [35, p.323]

I came across this passage in Charles Petzold’s 2008 book The Annotated Turing [47, p.300].
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Figure 11.1: A 3-tape DTM or a 3-tape ADM.

generality). Add to these observations the following two, and we obtain reasons to, at the very
least, doubt the validity of the Church-Turing Thesis:

1. Every partial function on N that is Turing computable is also ADM computable.

2. ADM’s arguably have a higher model fidelity than Turing machines with regard to human
(and electronic) computing.

Before elaborating on the second point, I emphasize, that, from a syntactical perspective, ADM’s
are DTM’s (i.e., deterministic Turing machines). Suppose, for instance, that each DTM under
consideration contains three tapes:

∙ an input tape

∙ a work tape

∙ an output tape

See Figure 11.1 for an illustration.
Without loss of generality, assume further that each DTM 𝑀 uses an end marker $ on its

output tape to signify the termination of its computation. Let each ADM 𝑁 contain the same
three tapes and suppose 𝑁 uses the end marker $ in a similar fashion. (In all previous sections,
DTM’s are defined as 1-tape machines without $ and ADM’s as 2-tape machines with $.) Even
then, each ADM 𝑁 differs semantically from any DTM 𝑀 , namely as follows:

1. The user of 𝑀 can only exploit 𝑀 ’s output once 𝑀 has halted, with $ as final output
symbol. The user of 𝑁 , in contrast, can observe and exploit the contents of 𝑁 ’s output
tape, even if 𝑁 has not printed $.

2. Suppose 𝑀 and 𝑁 implement the same partial function 𝑓 from N to N, with 𝑓(𝑥) ∈ N for
some 𝑥 ∈ N. Let strings 𝑖 and 𝑜 encode numbers 𝑥 and 𝑓(𝑥) in some standard fashion.
Then we have that:
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(a) 𝑀 on input 𝑖 has to terminate, with output 𝑜.

(b) 𝑁 on input 𝑖 does not have to terminate, it only has to output 𝑜.

There is no fundamental reason to prefer implementation scheme 𝑀 instead of the more
general scheme 𝑁 . Both schemes treat mathematical functions 𝑓 :: N → N ∪ {⊥} as primary
citizens. On the one hand, the critical reader is of course quite right to remark that only God (so
to speak) may observe an infinite computation of 𝑁 and declare that it is, indeed, providing a
finite output 𝑜. On the other hand, however, God is also needed to tell whether the complete
computation of an arbitrary DTM 𝑀 is finite or infinite. In sum, critique pertaining to ADM’s
also holds for DTM’s.

DTM’s have at least two drawbacks that ADM’s do not have. First, human (and even
electronic) computers are not able to show to the outside world all digits of their output instantly,
only incrementally. Second, in many computations, a prefix of the final output is known at some
preliminary stage of computation, and can, thus, already attain meaning in the outside world.
ADM’s capture these two traits of computing, while DTM’s do not.

11.1 Concurrency Theory

The idea to embrace nonterminating computations is far from novel. But, formalizing such
computations without abandoning the aforementioned functions on N as primary citizens is less
common. Consider, for example, the adjacent field of concurrency theory, which has an agenda
that I briefly convey with the following three quotes.

∙ Robin Milner in 1973:

– “Most of the computing agents with which computing science is concerned, for example
digital computers themselves, their memories and peripheral hardware devices, and

— more abstractly — computer programs, exhibit a behaviour which is not just the
computation of a mathematical function of their inputs, but rather a possibly infinite
sequence of communications with their environment.” [41, p.157]

∙ Moshe Vardi and Pierre Wolper in 1994:

“For many years, logics of programs have been tools for reasoning about the
input/output behavior of programs. When dealing with concurrent or nontermi-
nating processes (such as operating systems) there is, however, a need to reason
about infinite computations.” [59, p.1]

∙ Jos Baeten in 2005:

“Here, two breakthroughs were needed: first of all, abandoning the idea that a
program is a transformation from input to output, replacing this by an approach
where all intermediate states are important, and, secondly, replacing the notion
of global variables by the paradigm of message passing and local variables.” [1,
p.142]

In contrast to these authors, I have stuck to mathematical functions. With regard to Baeten’s
words, two remarks can be made to further position the present article in the literature. I have:

1. Continued viewing a program as a transformation from finite input to finite output.
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2. Incorporated various (but not all) intermediate states of computation; i.e., those states in
which output symbols are produced by ADM 𝑁 .

Consider, for example, a payroll application in which the user can already use the first sheet
of the machine’s printout, while the ADM-modeled machine is still producing the other sheets.
On the one hand, this example is intrinsically concurrent as the italicized word in the previous
sentence highlights. On the other hand, since I have not explicitly modeled “the user,” nor, thus,
any explicit form of user interaction, the territory of concurrency theory remains foreign on the
basis of the present paper alone.

11.2 Pandora’s Box

In retrospect, some theorists might — and perhaps rightfully so — insist that the present article
fails to debunk the Church-Turing Thesis. I beg to disagree for four main reasons. First, I have
proved, by resorting solely to concepts from classical computability theory, that halting Turing
machines are, in general, computationally inferior to potentially nonhalting Turing machines.
To be more precise, DTM’s are computationally weaker than ADM’s. Second, ADM’s do not
have a lower fidelity than DTM’s. (I argue that they have a higher fidelity.) Third, the ADM
model of computation is only the tip of the iceberg. It lies strictly in between the DTM model of
computation and the even more powerful models of Shapiro, Burgin, et al., which I shall discuss
later. Fourth, accepting the ADM model also amounts to opening Pandora’s box: We can add
an extra output tape and subsequently analyze the BDM model of computation (Figure 11.2).
Adding yet another output tape, results in the CDM model of computation. And so on. A study
of these extensions would amount to the following results:

∙ ADM’s are computationally weaker than BDM’s.

∙ BDM’s are computationally weaker than CDM’s.

∙ . . . ad infinitum . . .

Indeed, it is easy to formalize a diagonal argument such that some, well-defined, BDM 𝐷
diagonalizes out of the class of ADM-computable functions 𝑓 :: N→ N ∪ {⊥}. A similar remark
holds for a CDM 𝐷′ that diagonalizes out of the class of BDM-computable functions. And so
on. The formal details follow naturally from a similar exposition that has been provided in
Section 10, where the focus lay on the computations of real numbers by means of Turing’s 1936
machines, AdM’s, BdM’s, CdM’s, and so on. In that section I have charitably modeled Turing’s
1936 automatic machines with AdM’s, and subsequently proved that AdM’s are computationally
inferior to BdM’s, which, in turn, are inferior to CdM’s, etc.

11.3 Model Fidelity

Coming originally from engineering, I remain surprised that several scholars passionately defend
the claim that the modern Turing machine model (of Kleene, Davis, Hopcroft & Ullman) captures
all relevant aspects of the phenomenon being modeled: human computations. The reason for my
surprise is best conveyed by Brian Cantwell Smith, a computer scientist and philosopher:

“Every act of conceptualization, analysis, categorization, does a certain amount of
violence to its subject matter, in order to get at the underlying regularities that group
things together.” [54, p.20]
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Figure 11.2: A BDM has two output tapes. Each output symbol is observable to the outside
world from the moment it is printed. Each output symbol cannot be modified.

Figure 11.3: Human computation can be mathematically modeled in many ways, e.g., with
Deterministic Turing Machines (DTM’s) and with Alternative Deterministic Machines (ADM’s).
In various disciplines in which mathematical modeling is practiced, the model fidelity is always
taken to be imperfect, because that is precisely what makes modeling so powerful [38, 54].
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In engineering, the fidelity of a mathematical model is never perfect with regard to the real-world
phenomenon being modeled [27, 37].

If I am right to call “mathematical modeling” the true name of computability theory, then
it follows that neither DTM’s nor ADM’s capture all relevant traits of human (and electronic)
computing — a viewpoint illustrated in Figure 11.3. In retrospect, this point of view seems to
match every-day practice very well, as the following two examples indicate:

1. To adhere to the limitations of programming technology, various historical actors in computer
science have preferred finite-state machines over Turing machines in their theoretical
endeavors [21].

2. To capture the concurrent activities supported by a nonterminating operating system, Vardi
and Wolper (quoted above) discarded the traditional input/output behavior, so dominant in
automata theory. Instead, they viewed their finite-state programs as generators of infinite
words [58].

Although both examples are about electronic computations (and about software in particular),
it is straightforward to provide similar arguments for cooperative work practices of humans;
e.g., two mathematicians proving a theorem together, optionally with the constraint that each
mathematician has finite resources only.

Two take-away messages with regard to modeling can now be stated succinctly:

∙ Every model of computation — thus also the DTM model — is inherently partial and it
has to be, for else it would not be tractable; cf. Smith [54].

∙ Therefore, mindful researchers will use their model only when the target is “operating
within” the “regime of applicability of the model;” cf. Lee [38, p.42].

With these modeling insights, we can now briefly revisit Turing’s work in the 1930s.

11.4 The Fidelity of Turing’s 1936 Model

Before writing his 1936 paper, Alan Turing had grown up in an intellectual environment that is
perhaps best described with the following passage from one of Turing’s favorite books: Edwin
Brewster’s Natural wonders every child should know.8

“We have taken up being, and doing, and thinking. [. . .] We shall learn about how the
body of the plant or animal feeds itself and keeps alive, and how the different parts of
it, the bones and skin and leaves and bark, manage to get on with one another, and
work together like a well-made machine.

For, of course, the body is a machine. It is a vastly complex machine, many, many
times more complicated than any machine ever made by hands; but still after all a
machine. It has been likened to a steam engine. But that was before we knew as
much about the way it works as we know now. It really is a gas engine; like the engine
of an automobile, a motorboat, or an airplane.”

The repeated emphasis on machines in the previous passage is significant. Today, allegedly
and largely due to Turing, it is common in various circles to state that a human is a machine.

8Thanks to Charles Petzold’s lead [47] and Andrew Hodges’s biography [31], it seems fair to state that Brewster’s
exposition, as illustrated here [3, Ch.XXXV], is historically relevant concerning Turing’s maturing views on science.
Note, moreover, that the “human-as-machine” metaphor was already “commonplace” by the end of the 18th
century [40, p.45].
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In particular, a human computer is a Turing machine (cf. some flavors of the Church-Turing
Thesis) and a Turing machine is an electronic computer (cf. specific versions of the Physical
Church-Turing Thesis). Moreover, it is not uncommon for computer scientists to endorse, not
to mention conflate, both statements. Fortunately, critical voices have been raised before; see
e.g. the writings of Carol Cleland [10, 11], Oron Shagrir [51], Selmer Bringsjord et al. [4, 5], and
Mark Burgin [8, 9].

An emphasis on machines also appears in Robert Soare’s 1996 retrospective account, in which
he states that Turing might well have been “asking himself what was meant by calling a typewriter
mechanical” [55]. The engineer in me, however, says that a typewriter can be modeled in various
ways, and that Turing merely favored one of several viable approaches when he wrote his 1936
paper. For example, Turing chose not to model any of the following three aspects of a more
encompassing mathematician-as-typewriter metaphor:

1. The sheets coming out of the typewriter — and, likewise, the symbols on each sheet —
come out incrementally, not instantly (i.e., the central topic of the present article).

2. Typewriter 𝐴 can output a sheet of paper that serves as input for typewriter 𝐵. Analogously,
think of mathematician 𝐴 who produces a proof sketch that is to be filled in further by
mathematician 𝐵. I have commented on this slight form of interaction between agents
𝐴 and 𝐵 in Section 1.3, where I briefly scrutinized Wilfried Sieg’s positive stance on the
Church-Turing Thesis.

3. Mathematician 𝐴, who now uses a typewriter herself, typically makes a few mistakes.
Subsequently, she rectifies her mistakes (e.g., with a pen and whiteout) on the printout itself;
that is, she modifies one or more printed output symbols. More generally, mathematician 𝐴
makes a few mistakes with her typewriter and lets another mathematician 𝐵 correct 𝐴’s
output.

The third item captures a modeling approach that is orthogonal to the ADM-BDM-CDM-. . .
story of the present paper. Following through on the third item would amount to allowing an
ADM (or a BDM, or a CDM, . . .) to modify 𝑟 output symbols, where 𝑟 is a fixed, natural number.
Even more generally, one could concoct a machine that can modify output symbols a finite,
yet unbounded, number of times. This type of extension of the mathematician-as-typewriter
metaphor brings us, in the following paragraphs, to the notion of an ADM(𝑛) machine, the
writing of Shapiro et al., and Burgin’s inductive Turing machines.

11.5 Temporarily Imperfect Computations

Machines much more general than ADM’s — called ADM(𝑛)’s, with 𝑛 ∈ N — are based on the
idea that a human computer can make 𝑛 mistakes on “its output tape” and subsequently rectify
those mistakes during “its” computation. So, not only can an ADM(𝑛) append symbols to its
output (in compliance with the ADM model of computation), it can also retroactively modify its
output symbols, and it can do so at most 𝑛 times.

We take ADM to be an abbreviation of ADM(0); that is, a machine that makes no mistakes
(nor rectifications) during its computation. Taking 𝑛 = 1, we can now refer to ADM(1) in order
to convey a basic idea that (unfortunately) has hardly been addressed in the present paper:

A mathematician who makes one mistake and subsequently rectifies her mistake
(cf. ADM(1)) is more powerful than a similar mathematician who is deprived of
temporarily being imperfect (cf. ADM).
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The halting problem of Turing machines — i.e., the unconstrained halting problem of the devil’s
advocate, discussed in Section 1.4 — can be solved by an ADM(1) machine:

Theorem. There is an ADM(1) machine 𝑉 that solves the Halting problem for ordinary Turing
machines.

Proof. We construct ADM(1) machine 𝑉 as follows. 𝑉 , on input 𝑤, first checks whether 𝑤 is
⟨𝑀𝑑, 𝑤𝑑⟩ for some 𝑑 ≥ 1, with 𝑀𝑑 a DTM description, and 𝑤𝑑 an input word. If this check
does not pass, then 𝑉 prints the symbol 0 infinitely many times on its output tape (i.e., 𝑉
demonstrates nonconverging behavior). Else, 𝑉 on input ⟨𝑀𝑑, 𝑤𝑑⟩ prints one occurrence of 0 on
its output tape. Then, 𝑉 simulates 𝑀𝑑 on 𝑤𝑑. Two cases can be distinguished:
Case 1: 𝑀𝑑 on 𝑤𝑑 halts. Then, 𝑉 flips 0 to 1 on its output tape, prints $ and halts.
Case 2: 𝑀𝑑 on 𝑤𝑑 does not halt. Then 𝑉 simulates 𝑀𝑑 on 𝑤𝑑 forever, with 𝑉 ’s output tape
containing string 0.

Remark. The general idea underlying the above proof can be understood without depending
on the previous sections. For simplicity, the proof relies on the assumption that all machines
of interest work on binary digits (0 and 1) only. As we shall see shortly, the proof is far from
novel. Moreover, and again, no claim is made in the present paper that the theorem itself has
any immediate, novel applications.

In addition to the previous theorem and proof about ADM(1) machines, a more general
observation (𝑛 ≥ 1) can be made:

A mathematician who can temporarily make 𝑛 mistakes, for some fixed number 𝑛 > 0,
is computationally more powerful than a similar mathematician who can temporarily
make at most 𝑛− 1 mistakes.

It is, after all, not uncommon in real life for a mathematician to derive results that are not to her
satisfaction, to subsequently make 𝑛 adjustments, and, finally, obtain a more desirable outcome.
A similar remark holds for computer programmers, with the caveat that many of their bugs
(software errors) are often only corrected after their software has been deployed.

In the limit, we can analyze mathematicians who can make a finite, yet unbounded, number
of mistakes and corresponding rectifications in their computational work: we write ADM(−) to
denote the mathematical counterpart. These ADM(−) machines are even more powerful than
any of the ADM(𝑛) machines. For example, the present author has written this article largely in
compliance with a BDM(−) model:

∙ I wrote the abstract of this article after spending months on all the rest. Hence, my reference
to the prepending capability of a BDM, which an ADM does not have.

∙ I made some arbitrary, finite number of rectifications to draft versions of this article. Hence,
my reference to a BDM(−), and not a BDM(𝑛), for any predefined number 𝑛.

Moreover, I have received feedback from colleagues on drafts of this paper. That is, I have
interacted with other scholars. Arguably, then, a BDM(−) model does not fit the bill completely.
In retrospect, this is only to be expected, for no single model has a perfect fidelity with regard
to the real-world phenomenon/activity that is being modeled. Attempts to more faithfully
capture the interactive nature of my research would, perhaps, amount to using the reactive
Turing machines of Jos Baeten et al. [2] and/or the persistent Turing machines of Dina Goldin et
al. [25, 26].
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11.6 Mark Burgin’s Inductive Turing Machines

The extensions, just presented, of Turing’s mathematician-as-typewriter metaphor provide an
intrinsic motivation to embrace ADM(𝑛) machines — and, likewise, BDM(𝑛)’s, CDM(𝑛)’s, and so
on — as natural models of algorithms. My metaphor-based motivation is, I believe, a contribution
to the present state of the art.

The main idea underlying the proof of the previous theorem, however, already appears in e.g.
an article by Timothy McCarthy & Stewart Shapiro9 and, more profoundly, in Mark Burgin’s
work on inductive Turing machines [9]. Credit for casting doubts on the Church-Turing Thesis, if
not debunking the thesis altogether, goes first and foremost to Burgin.10 In his words:

“Working without halting, [an inductive Turing machine] ITM can occasionally change
its output as it computes more. However, a machine that occasionally changes outputs
does not deter humans. They can be satisfied when the printed result is good enough,
even if another (possibly better) result may come in the future.” [8, p.86]

This passage conveys a more general way of viewing computation than what modern Turing
machines and even ADM’s have to offer. For example, if a computer provides me with a weather
forecast, then that forecast will influence my actions, even though I might receive an updated
weather forecast a few hours later. Both forecasts are valuable, not only the last forecast. In
retrospect, then, reconsider Kugel’s complementary description of what is generally called an
eventually correct machine in the literature:

“When we use a computer to compute, we take its first output to be its result. But
when we use it to compute in the limit, we take its last output as its result without
requiring that it announce when an output is its last.” [36, p.35, my emphasis]

Indeed, from a function-centric perspective, and in adherence to an ADM(−) view on computation,
we take the last output to be the official result. Historians of computability theory, in turn, will
then not be surprised to come across the following kind of criticism, written by actors who have
vested interests in classical concepts:

“It is generally understood that in order for a computational result to be useful one
must be able to at least recognize that it is indeed the result sought.” [18, p.128]

The indented remark comes from Martin Davis, the father of the modern “Turing machine”
concept; cf. [6, 20]. Davis dismisses the work of Mark Burgin yet does not distinguish between
Burgin’s conceptually simple, mathematical framework and the more extreme positions that
dominate the rest of the field of hypercomputation [17, 18]. Specifically, the simplest of Burgin’s
inductive Turing machines are computationally superior to Turing machines yet do not rely on
infinitely fast computations, nor on the ability to store infinitely many digits in a finite space.
Critics of Burgin seemingly fail to make this observation. Naveen Sundar Govindarajulu et al. [28],
in turn, also scrutinize Davis’s reservations about hypercomputation in general — a topic that
lies outside the scope of the present article.

To recapitulate, “Turing aimed at modeling the limits of human computation” [57, p.192] and
the thesis carrying his name states that “Turing machines can do anything that could be described
as rule of thumb or purely mechanical” [57, p.192]. In the present article, I have attempted to

9See McCarthy & Shapiro [39]. Slightly less related writings, also concerning eventually correct systems, are
due to Hilary Putnam [49] and Jürgen Schmidhuber [50].

10I have not been able to access Burgin’s original 1983 account on inductive Turing machines [7]. His 2005
book, although hard to read, reveals the thoughts of an original thinker [9]. I am not (yet) in a position to grasp
Burgin’s ideas concerning extensions of his simplest kind of inductive Turing machine [9].

40



improve Turing’s modeling activity. In the process of doing so, I (and others before me) have
arguably debunked Turing’s Thesis and, by extension, the Church-Turing Thesis. Some, if not
many, readers may still wish to ignore the previous statement without dismissing the presented
mathematics altogether. To end with Minsky’s 1967 words:

“The reader who finds himself in strong disagreement either intellectually or (more
likely) emotionally should not let that keep him from appreciation of the beautiful
technical content of the theory developed . . .” [43, p.105]
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