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In the popular imagination, the relevance of Turing’s theoretical ideas to people producing actual machines was
significant and appreciated by everybody involved in computing from the moment he published his 1936 paper
‘On Computable Numbers’. Careful historians are aware that this popular conception is deeply misleading. We
know from previous work by Campbell-Kelly, Aspray, Akera, Olley, Priestley, Daylight, Mounier-Kuhn, Haigh,
and others that several computing pioneers, including Aiken, Eckert, Mauchly, and Zuse, did not depend on (let
alone were they aware of) Turing’s 1936 universal-machine concept. Furthermore, it is not clear whether any
substance in von Neumann’s celebrated 1945 ‘First Draft Report on the EDVAC’ is influenced in any identifiable
way by Turing’s work. This raises the questions: (i) When does Turing enter the field? (ii) Why did the Association
for Computing Machinery (ACM) honor Turing by associating his name to ACM’s most prestigious award, the
Turing Award? Previous authors have been rather vague about these questions, suggesting some date between
1950 and the early 1960s as the point at which Turing is retroactively integrated into the foundations of computing
and associating him in some way with the movement to develop something that people call computer science. In
this paper, based on detailed examination of hitherto overlooked primary sources, attempts are made to reconstruct
networks of scholars and ideas prevalent in the 1950s, and to identify a specific group of ACM actors interested
in theorizing about computations in computers and attracted to the idea of language as a frame in which to
understand computation. By going back to Turing’s 1936 paper and, more importantly, to re-cast versions of
Turing’s work published during the 1950s (Rosenbloom, Kleene, Markov), I identify the factors that made this
group of scholars particularly interested in Turing’s work and provided the original vector by which Turing
became to be appreciated in retrospect as the father of computer science.

1. Introduction
In August 1965, Anthony Oettinger and the rest of the Program Committee of the ACM

met and proposed that an annual ‘National Lecture be called the Allen [sic] M. Turing
Lecture’.1 The decision was also made that the ACM should have an awards program.
The ACM Awards Committee was formed in November 1965 (Association of Computing
Machinery 1966a). After having collected information on the award procedures ‘in other
professional societies’, Lewis Clapp—chairman of the ACM Awards Committee—wrote in
August 1966 that

[a]n awards program [··· ] would be a fitting activity for the Association as it
enhances its own image as a professional society. [··· ] [I]t would serve to accentuate
new software techniques and theoretical contributions. [··· ] The award itself might

1 See Association of Computing Machinery (1965, p. 5). The minutes of that meeting state:

Bright reported that the Program Committee recommends that the National ACM Lecture be named the Allen [sic]

M. Turing Lecture. Oettinger moved, seconded by Young that it be so named. Several council members indicated

they were not satisfied with this choice. Juncosa suggested we consider a lecture name that is not that of a person.

vanWormer moved, seconded by Juncosa to table the motion. The vote was: for − 15; opposed − 5; abstention − 2.

(Association of Computing Machinery 1965, p. 11, original emphasis)
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be named after one of the early great luminaries in the field (for example, ‘The
Von Neuman [sic] Award’ or ‘The Turing Award’, etc.). (Association of Computing
Machinery 1966b)

The mathematician Alan J. Perlis officially became ACM’s first A.M. Turing Lecturer and
Turing Awardee in 1966. Besides having been the first editor-in-chief of the Communica-
tions of the ACM, Perlis had earned his stripes in the field of programming languages during
the 1950s and had been President of the ACM in the early 1960s. Perlis was thus a well-
established and influential computer scientist by the mid-1960s. In retrospect, decorating
Perlis was only to be expected. But why did the ACM honor Turing? Turing was not well
known in computing at large in the 1960s and early 1970s (Daylight 2012a). Apparently,
his name was preferred over John von Neumann’s and Emil Post’s, yet all three researchers
had deceased by 1957 and all three were highly respected by some very influential actors
in the ACM—including John W. Carr III, Saul Gorn, Perlis, and Oettinger.2 And why are
we celebrating Turing today? The latter question was posed repeatedly during Turing’s
centennial in 2012.

The ACM, founded in 1947, was an institutional response to the advent of automatic
digital computers in American society. Only some of those computers, most of which
were still under construction, were based on the principle of a large store containing both
numbers and instructions—a principle that is also known today as the ‘stored program’
principle.3 That principle, in turn, paved the way for computer-programming advance-
ments which were sought by men like Carr, Gorn, and Perlis. The Cold War was also
responsible for massively funded research in machine translation (later also called auto-
matic language translation). The young student Oettinger at Harvard University was one of
several embarking on Russian-to-English translation projects. Another example is Andrew
Booth, a British computer builder who had met in 1946 with the prominent American sci-
entist Warren Weaver to discuss the possibility of mechanically translating one language
into another. In between 1946 and 1947, Booth visited several computer laboratories in the
USA, including John von Neumann’s lab at the Institute for Advanced Study in Princeton.
By 1952, he was both an accomplished computer builder and a programmer of a mechan-
ical dictionary. As the postwar years progressed, several computer specialists turned into
applied linguists and many professional linguists became programmers (Bar-Hillel 1964,
p. 7; Locke and Booth 1955, p. 2, 3, 12, 24; Oettinger 1999, p. 207). Documenting this
technological convergence leads to a better understanding of when, how, and why Turing
assumed the mantle of ‘the father of computer science’.

In this article, I describe the convergence by zooming in on the work of Booth, Carr,
Gorn, and Oettinger.4 I will show that, not until the 1950s, did computer programmers

2 Carr was President of the National Council of the ACM in 1957–1959, founding editor of Computing Reviews in 1960–1962,

and member of the Committee for the Turing Award during the second half of the 1960s. Gorn was committee member on

programming languages, a Council Member in 1958–1968, and Chairman of the Standards Committee in 1962–1968. Oettinger

was President of the ACM in 1966–1968 (Akera 2006, Carr 1957, Lee 1995, Nofre 2012, Oettinger 1999).
3 The phrase ‘a large store containing both numbers and instructions’ is akin to the terminology used by Booth and Booth (1956).

The primary sources listed in the bibliography suggest that the Booths, Carr, Gorn, and several other actors did not use the

words ‘stored program’ during the first half of the 1950s. As Mark Priestley notes in his book, A Science of Operations (2011),

it was the early machines (such as the ASCC and ENIAC) that were described as revolutionary: ‘It was several years until

the first machines based on the stored-program design became operational, and even longer until they were widely available’

(2011, p. 147).
4 The reader should bear in mind that although I have extensively studied the ‘Saul Gorn Papers’, which also contain correspon-

dence between Gorn and Carr, the papers do not contain many primary sources of the 1940s and early 1950s. Moreover, I have

yet to travel to the Great Lakes in order to study the ‘Alan J. Perlis Papers’ at the Charles Babbage Institute, and the ‘John

W. Carr Papers’ and ‘Arthur W. Burks Papers’ at the Bentley Historical Library. In future research I also aspire to covering



Turing—the Father of Computer Science 207

like Booth and Gorn begin to reinterpret the electronic computer in terms of the universal
Turing machine. They did this with the purpose of developing higher level programming
languages.5 Turing thus assumed the mantle of ‘the father of computer science’ for reasons
that are orthogonal to the commonly held belief that he played an influential role in the
design or construction of ‘universal computers’. My historical account is primarily about
the 1950s and ends with a brief discussion of Turing’s 100th birthday in 2012 and with
published work related to this article.

The take-away message in general terms is that the 1950s constitute a decade of cross
fertilization between linguistics, computer programming, and logic. That decade is prefer-
ably not viewed as a smooth road from modern logic to computing; if there was any road
at all in the history of computing, then it was most definitely from practice to theory.

2. Machine translation—a bird’s eye view
‘See what you can do with your Russian’, the student Oettinger was told around 1949

by the American computer pioneer Howard Aiken at Harvard after the latter had corre-
sponded with Weaver on the vexing topic of machine translation.6 Weaver had directed
American war work of hundreds of mathematicians in operations research. Fully aware of
the developments in electronic computing machines, he had come to believe around 1946
that code-breaking technology from the war could help detect certain invariant properties
that were common to all languages. Weaver had expressed his ambitious ideas in writ-
ing in his 1949 memorandum Translation (Locke and Booth 1955, Ch. 1) which, in turn,
sparked intense American interest, including Aiken’s interest, in the possibility of auto-
matic language translation. In comparison with Booth’s mechanical dictionary from 1952,
Weaver’s original idea on machine translation was more ambitious, namely to go ‘deeply
into the structure of languages so as to come down to the level where they exhibit common
traits’. Instead of trying to directly translate Chinese to Arabic or Russian to Portuguese,
Weaver supported the idea of an indirect route: translate from the source language into
an ‘as yet undiscovered universal language’ and then translate from that language into the
target language (Locke and Booth 1955, p. 2, 3, 15, 23).

In the academic year 1949–1950 Oettinger started thinking about mechanizing a
Russian-to-English dictionary. He also stayed at Maurice Wilkes’s computing laboratory
in Cambridge for a year where he met Alan Turing on a regular basis. Wilkes, in turn,
also visited leading figures in computing. He regularly traveled from England to the USA
where he met with Aiken, von Neumann, and many others. Apart from being an accom-
plished computer designer, Wilkes was also practicing and advancing the art of computer
programming. In this regard, around 1952, he met Perlis and Carr who were working on
Project Whirlwind at MIT (Wilkes 1985, p. 31). Perlis had obtained his Ph.D. in mathemat-
ics from MIT in 1950. Carr had done the same in 1951 and had also spent some weeks in
Wilkes’s computer laboratory in England together with Oettinger. The world of computer
practitioners was thus a very small one: many practitioners knew each other on a personal
level (Akera 2006, Wilkes 1985) and several became involved in the ACM.7

the work of Maurice Wilkes and Christopher Strachey. Complementary to all this, I have written a chapter for a Dutch book

De geest van de computer (Daylight To appear. English translation to appear.) in which I discuss the accomplishments of the

Dutch computer builders Gerrit Blaauw and Willem van der Poel and the programmers Aad van Wijngaarden and Edsger W.

Dijkstra.
5 A complementary history of programming languages is covered in Knuth’s ‘The Early Development of Programming Lan-

guages’ (2003, Ch. 1). While Carr and Gorn are not mentioned in the main body of Knuth’s account, they are key players in

the present article.
6 The words ‘machine translation’ and ‘automatic language translation’ are used interchangeably in this article.
7 In retrospect, it is safer to restrict the claim that ‘everybody knew each other’ to British and American practitioners. Grace

Hopper’s 1978 recollection illustrates this point:
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Initially, most linguists were rather pessimistic about Weaver’s memorandum, relegating
his aspirations about machine translation to the realm of the impossible. Gradually, they
started to see opportunities (Locke and Booth 1955, p. 4, 137). By 1951 the computer
had made a clear mark on linguists. The Israeli linguist Bar-Hillel conveyed that message
by making an analogy with chemistry. Chemists, he said, need ‘special books instructing
students how to proceed in a fixed sequential order [··· in their] attempted analysis of a
given mixture’ (Bar-Hillel 1964, pp. 158–9, my emphasis). Likewise, special books will
have to be written for the linguist, books that contain ‘sequential instructions for linguistic
analysis, that is, an operational syntax’ (Bar-Hillel 1964, pp. 158–9, original emphasis).
According to the historian Janet Martin-Nielsen, American linguistics at large transformed
from elicitation, recording and description before the war to theory and abstract reasoning
after the war. It ‘rose to prominence as a strategic and independent professional discipline’
(Martin-Nielsen 2010).

Researchers knew that literal translations would yield low quality machine translation.
Therefore, some of them sought methods to construct ‘learning organs’; that is, machines
that ‘learn’ which translation to prefer in a given context (Bar-Hillel 1964, p. 154). As
Weaver had already put it in 1949: the ‘alogical elements’ in natural language, such as
‘intuitive sense of style’ and ‘emotional content’, rendered literal translation infeasible
(Locke and Booth 1955, p. 22).

Weaver’s remarks can, in retrospect, be viewed as part of a grander intellectual debate
in which fundamental questions were posed such as whether machines can think (cf. E. C.
Berkeley’s Giant Brains, or Machines That Think (Berkeley 1949)). Weaver had addressed
this issue optimistically in 1949. A year later, Turing’s 1950 article ‘Computing Machin-
ery and Intelligence’ was published (Turing 1950). It was followed up by Wilkes’s ‘Can
Machines Think?’ (Wilkes 1951).

Weaver’s memorandum was based on an appreciation for the theoretical 1943 work
of McCulloch & Pitts, entitled ‘A Logical Calculus of the Ideas Immanent in Nervous
Activity’ (McCulloch and Pitts 1943). McCulloch and Pitts had essentially tried to find a
mathematical model for the brain. Weaver described their main theorem as a ‘more gen-
eral basis’ for believing that language translation was indeed mechanizable by means of
a ‘robot (or computer)’.8 In other words, according to Weaver there was no theoretical

I had absolutely no idea of what [the Swiss] Rutishauser, [the German] Zuse, or anyone else was doing. That word had

not come over. The only other country that we knew of that was doing anything with the work was Wilkes in England.

The other information had not come across. There was little communication, and I think no real communication with

Germany until the time of ALGOL, until our first ALGOL group went over there to work with them. I think it’s difficult

for you in a seminar here to realize a time when there wasn’t any ACM, there wasn’t any IEEE Computer Society.

There was no communication. There was no way to publish papers. (Wexelblat 1981, p. 23)

8 That ‘robot’, which was of a ‘certain formal character’, could deduce ‘any legitimate conclusion from a finite set of premises’.

Weaver adapted McCulloch and Pitts’s theorem to mean that ‘insofar as written language is an expression of logical character’,

the problem of machine translation is at least solvable in a formal sense (Locke and Booth 1955, p. 22).

Neither Weaver nor McCulloch and Pitts explicitly referred to Turing’s papers. Moreover, I have given no evidence here to

suggest that Weaver was, by 1949, well versed in Turing’s theoretical work. Likewise, McCulloch and Pitts’s sole, brief, and

inadequate reference to a ‘Turing machine’ in one of their concluding remarks could suggest that they were not well versed

in Turing’s theory of computation either. Their sole reference to a ‘Turing machine’ was, strictly speaking, incorrect. In their

words:

[E]very net, if furnished with a tape, scanners connected to afferents, and suitable efferents to perform the necessary

motor-operations, can compute only such numbers as can a [universal] Turing machine. (McCulloch and Pitts 1943)

Nevertheless, an indirect link between Weaver’s research agenda on machine translation and Turing’s 1936 notion of a uni-

versal machine had been established by 1949, even though Turing’s work had yet to really surface in both linguistics and
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obstacle to machine translation: learning organs could, at least in principle, resolve the
translation problem.

After Oettinger left Aiken’s lab at Harvard to temporarily join Wilkes’s research team in
Cambridge, Wilkes made clear to Oettinger that he had ‘no use for language translation’.
Instead, he urged Oettinger to address the question whether computers might be able to
learn (Oettinger 1999, p. 208). It is in this setting that, for Oettinger, ‘Alan Turing and
others became familiars at meetings of the Ratio Club’ (Oettinger 1999, p. 208). Oet-
tinger’s work on the EDSAC led up to his 1952 paper ‘Programming a Digital Computer to
Learn’ (Oettinger 1952, my emphasis), in which he targeted an audience of psychologists,
neuro-physiologists, and everyone concerned with non-numerical applications of digital
computers. He connected the McCulloch & Pitts’s paper to automatic digital computers
and wrote that ‘digital computers can be made to serve as models in the study of the func-
tions and of the structures of animal nervous systems’.9 Due to Turing’s direct influence,
Oettinger used the words ‘universal digital computer’ in his paper.10 But, although Oet-
tinger included both Turing’s 1936 and 1950 papers in his bibliography, it was Turing’s
1950 ‘imitation game’ that mattered most to him. Oettinger was, after all, concerned with
programming a real computer, the EDSAC, so that it could ‘learn’.

After returning to Harvard, Aiken disapproved of his student’s turn towards learning
organs and forced him to return to his automatic language translation project (Oet-
tinger 1999), which would lead up to his 1954 Ph.D. dissertation, A Study for the Design
of an Automatic Dictionary. In the immediately following years, he dived into the needs of
the milk and banking industries (Akera 2006, p. 6). Oettinger’s papers on data processing
(Giuliano and Oettinger 1959, Oettinger 1957) and his comprehensive 1960 book Auto-
matic Language Translation (Oettinger 1960), which was partially about programming the
Univac I for the purpose of machine translation, did not contain any references to Turing
and the like.

By 1961, Oettinger was referring—through Paul Rosenbloom’s 1950 book The Ele-
ments of Mathematical Logic—to the works of Alonzo Church, Turing, and especially
Emil Post (Rosenbloom 1950, Ch. IV). As professor of Mathematical Linguistics, Oet-
tinger was giving the bigger picture of the converging developments that had taken place
during the 1950s. ‘Syntactic analysis’, he said, had received considerable attention, not
only from the ‘mathematical linguists’ (such as Noam Chomsky and himself), but also
from ‘applied mathematicians’ (such as Carr and Perlis) and ‘mathematical logicians’.
The mathematical linguists were seeking algorithms for automatic translation among
natural languages. The applied mathematicians (i.e. the computer programmers) were con-
cerned with the design and translation of languages suitable for programming machines.

computing. For example, no reference was made to Turing, Post, and the like in the comprehensive 1955 book Machine

Translation of Languages (Locke and Booth 1955).
9 See Oettinger (1952, p. 1243). For a good understanding of the connection between McCulloch and Pitts’s 1943 paper and von

Neumann’s work on the EDVAC, see Akera (2007, p. 118–19) and Burks (2001, p. 188) in conjunction.
10 See Oettinger (1952, p. 1244). By 1946 Turing had become well aware of the fact that his 1936 notion of a universal machine

could, essentially, serve as a mathematical model of a general purpose computer (Hodges 2007, p. 4,6, Priestley 2008, p. 76).

Turing, von Neumann, and their close associates may well have been the only people to have seen this connection during

the 1940s. It was by presenting his 1950 paper, in which he devoted a section to ‘The Universality of Digital Computers’,

that Turing gradually changed the common perception among some of his contemporaries, including Wilkes and Oettinger

(Priestley 2008, p. 79,84; 2011, p. 152–53).

During the 1950s, a continually increasing number of computer practitioners began to view a universal Turing machine as a

mathematical model for a general-purpose computer that was based on the principle of a large store containing both numbers

and instructions. The practitioners included computer designers, switching theorists, and logicians—such as Willem van der

Poel, Edward F. Moore, and Hao Wang (Daylight 2012a, Ch. 2). Moore, for example, wrote in 1952 that a universal Turing

machine ‘can, loosely speaking, be interpreted as a completely general-purpose digital computer’ (Moore 1952, p. 51).
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The mathematical logicians, in turn, had been exploring the structure of formal artificial
languages (Oettinger 1961, p. 104).

By 1963, the theoretical work of Post, Turing and several others had become com-
mon currency among some influential academics in both mathematical linguistics and
in computing, particularly in automata theory and automatic programming. The profes-
sional linguist Bar-Hillel had already expressed his appreciation for ‘recursive function
theory, Post canonical systems, and the like’ in 1960.11 And in the Classification System
of the December 1963 issue of the Computing Reviews, ‘Turing Machines’ was explicitly
mentioned next to ‘Automata’.

3. Automatic programming—a worm’s eye view
Besides the machines housed at MIT, Harvard University, and Cambridge University,

also the ENIAC, EDVAC, and IAS machines should not go unmentioned. The ENIAC
and EDVAC were constructed at the Moore School of Engineering, Philadelphia, and were
later housed in Maryland at Aberdeen Proving Ground, where John von Neumann was a
consultant for several years (Alt 1972, Burks 2002, p. 886). During the second half of the
1940s, von Neumann and his team built the IAS computer at the Institute for Advanced
Study, Princeton (Dyson 2012).

During the early 1950s, Andrew Booth was, together with his wife Kathleen, writing
a book entitled Automatic Digital Calculators (cf. Booth and Booth 1956). In the preface
of their first edition, published in 1953, the authors explicitly acknowledged ‘their indebt-
edness to John von Neumann and his staff’ at Princeton for ‘the stimulating period spent
as the guests of their Project’ (Booth and Booth 1956, p. vii). Reflecting on the history of
computer building, the authors referred to several people, including Leibniz, Pascal, Bab-
bage, Jacquard, and Hollerith. No mention was made of Turing throughout the whole book,
except for a brief reference to the ACE computer which had been ‘under the direction of
Womersley, Turing and Colebrook’.12

Moreover, in the section ‘The universal machine’, the authors referred to ‘the Analytical
Engine’ of Babbage and essentially described him as the father of the universal computer.13

In this connection, they mentioned the machines built by Howard Aiken (1937–1944) and
at Bell labs (1938–1940, 1944), describing them as ‘universal’ and ‘general purpose’. More
specifically, the authors distinguished between a special purpose and a general purpose
machine in the following manner. A ‘special purpose machine’ was constructed to perform
one set of operations, to solve one particular problem. For example, a computer that can
only compute Income Tax (for different sets of input) was special purpose. General purpose
computers, by contrast, were ‘capable of being set up to solve any problem amenable
to treatment by the rules of arithmetic’ (Booth and Booth 1956, p. 1). The authors also
clarified their notion of ‘universality’ by noting that multiplication and addition can be
defined in terms of subtraction; therefore:

11 See Bar-Hillel (1964, p. 84). Bar-Hillel was moreover coming to the conclusion that ‘even machines with learning capabilities

[··· ] will not be able to become fully autonomous, high-quality translators’ (1964, p. 9).
12 See Booth and Booth (1956, p. 16). Likewise, no mention of Turing was made in the comprehensive 1971 book Com-

puter Structures: Readings and Examples (Bell and Newell 1971). (I thank David L. Parnas for bringing this book to my

attention). Turing’s involvement with computer building was popularized later, by Randell (1973), Hodges (1983), Robin-

son (1994), Davis (2000), Dyson (2012), and others. David Kahn’s 1967 book The Codebreakers (Kahn 1967) did not cover

much about Turing either. (I thank Vinton G. Cerf for bringing this book to my attention.)
13 Contrast this with George Dyson’s claim that Booth saw von Neumann’s computer project at Princeton as the practical

implementation of both Babbage’s and Turing’s ideas (Dyson 2012, p. 132). For further scrutiny of Dyson’s book Turing’s

Cathedral, I refer to my review (Daylight 2012b).
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Whatever type of computing machine is projected, so long as it is to have the
attribute of universality, it must necessarily have in its structure some component
capable of performing at least the most elementary operation of arithmetic—
subtraction. (Booth and Booth 1956, p. 22, my emphasis)

It was due to the ‘expense’ and ‘difficulty’ of incorporating several electrical or elec-
tronic components that ‘most modern general purpose computers’ did not include square
root units, dividers, and—in some cases—even multipliers (Booth and Booth 1956, p. 3).14

Some of the first computers, like the ENIAC, were—at least initially—provided with a
plugging system ‘so that the various units [could] be connected together and sequenced
to suit the particular problem to be solved.’ (Booth and Booth 1956, p. 14). Some of the
later machines of the 1940s and early 1950s, like the EDSAC and the EDVAC, were based
on the principle of a large store containing both numbers and instructions. The authors
established an epistemological relationship between Babbage’s work and the principle of a
large store.15 Furthermore, from the authors’ perspective, the incentive to use a large store
was primarily an engineering one.

When ENIAC was under construction, von Neumann and his co-workers devoted
considerable attention to the problem of the optimum form of a calculating machine.
As a result of this it was shown that a calculating machine should have a storage
capacity of the order of 1,000 [8,000]16 words and that, given this, both operat-
ing instructions and pure numbers could be stored in the same unit. (Booth and
Booth 1956, p. 15, my emphasis)

Choosing to store both ‘operating instructions’ and ‘pure numbers’ in the same store, as
opposed to storing each in a separate store, was based on practical concerns, not theoretical
reasoning.17 Likewise, the incentive among many computer builders to list all instructions
consecutively in one part of the store and the pure numbers in another part (of the same
store) was, according to the Booths, based on the practical concerns of ‘simple process
control’ and economic use of ‘memory capacity’.18

14 In modern terminology: Most computer designers who considered using a small instruction set did not do this in connection

with practically realizing a universal Turing machine. An exception in this regard, other than Turing himself, was the suc-

cessful Dutch computer builder Willem van der Poel. In his 1952 design of his ZERO computer, van der Poel did refer to

Turing’s theoretical 1936 notion of universality in connection to the ZERO’s arithmetical unit. Van der Poel sought the most

simple computer that was still universal in Turing’s theoretical sense (van der Poel 1952, p. 376). He elaborated this principle

in his Ph.D. dissertation (van der Poel 1956). For brief accounts, see De Mol and Bullynck (2012) and Daylight (2013c). An

extensive account is forthcoming (Daylight To appear. English translation to appear.).
15 Several chapters in Bowden’s (1953) book Faster than Thought honored Babbage in a similar manner. Chapter 8 on the ACE

also made a connection between Turing and Womersley’s computer building aspirations on the one hand, and Turing’s 1936

paper on the other hand. But, as the ‘Türing Machine’ entry on page 414 indicates, the vast majority of computer builders—and

practitioners in general—did not read Turing’s 1936 paper, let alone grasp it’s practical implications (cf. Daylight 2012a).
16 I thank Thomas Haigh for making this correction.
17 So far, my exposition aligns well with one of Akera’s main claims, namely that

[a]side from the relative ease by which a program could be set up on such a system, the major aim of [EDVAC’s]

design was to reduce the amount of hardware by severely limiting the machine’s parallelism. (Akera 2007, pp. 115–6)

18 See (Booth and Booth 1956, pp. 15, 23–4). A discussion of von Neumann’s own writings lies outside the scope of this article.

I speculate that he knew that a store was not a necessary condition (nor a sufficient condition) for realizing a practical version

of a universal Turing machine (cf. endnote 14 in Daylight 2012a, p. 202). Or, as Allan Olley befittingly puts it, ‘the stored

program [computer] is not the only way to achieve [what was later called] a Turing complete machine’ (Olley 2010). The

terms ‘Turing’ and ‘completeness’ were in use by 1965 (cf. Sanderson 1965).

Von Neumann was in a position to see that the universal Turing machine was a mathematical model of his IAS computer,

the EDVAC, and the ENIAC. There are no primary sources supporting the popular belief that he thought he was building
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Common storage of numbers and instructions inside the computer opened the door for
new programming techniques. And, the realization that many computations can be reduced
to iterative processes made it ‘most desirable’ that data could be erased in any given mem-
ory location and be replaced by new material (Booth and Booth 1956, p. 23, my emphasis),
a topic which I shall return to shortly.19

Common storage was, however, not a prerequisite to embark on programming. Some
people, like Konrad Zuse, stored commands apart from numbers (cf. Gorn 1954, p. 76).
Similarly, Haskell Curry made a sharp conceptual distinction between commands and pure
numbers (De Mol et al. 2010). Another important name in this regard is Aiken, as the
following words from Grace Hopper in 1978 indicate:

Aiken was totally correct in saying that the programs and the data should be in
separate memories, and we’re just discovering that all over again in order to protect
information. (Wexelblat 1981, p. 21)

Indeed, in practice today, most software never treats data as code.20

3.1. Space cadets
Specifying the orders to accomplish a computation was a tedious task. Relieving the

programmer from that task was the job of the ‘space cadets’—a name that Carr gave in
1953 to those programmers who wanted to invest time and money in building interpreters
and compilers (Wilkes 1985, pp. 210–1). Carr and his space cadets (including Booth, Gorn,
Perlis, and Wilkes) advocated automatic programming. They wanted to design ‘pseudo
codes’—‘each order of which will, in general, represent a number of orders in the true
machine code’ (Booth and Booth 1956, p. 212).

the first practical realization of a universal Turing machine. Priestley has drawn very similar conclusions in his recent book

(2011, pp. 139, 147–8). More important then is Akera’s observation that von Neumann was embarking on a ‘formal theory of

automata’, a theory which pertained to ‘machines capable of modifying their own programs’ (2007, p. 119). And, just to be

clear, the ability to modify its own programs is not a prerequisite to practically realizing a universal Turing machine.
19 An erasable store was not a necessary condition (nor a sufficient condition) for realizing a practical version of a universal

Turing machine, a fact known to the mathematical logician Hao Wang in 1954 who did ponder about these theoretical issues

(Daylight 2012a, p. 21).
20 See Erlingsson et al. (2010). Furthermore, from a sociological perspective, it is interesting to compare and contrast Hopper’s

words with the following words made by Andrew Appel in 2012:

[Appel, 27 minutes and 44 seconds into his talk:] The machines we use today are von-Neumann machines. And von

Neumann was quite clearly influenced by Turing in building universal machines with a finite-state control and infinite

tape. Really the only difference is that the infinite tape is random access rather than linear access. So von-Neumann

machines are what we now call computers. The Harvard architecture in which the program is not stored in the memory

of the computer; well, we saw a quotation from Howard Aiken [in the previous talk by Martin Davis (Davis 2012)—a

quotation which Davis repeatedly uses to ridicule Aiken and which I object to in my book (Daylight 2012a, Ch. 8)].

By the 90s, when you called something a Harvard architecture, you meant that the program was stored in a memory

but in a read-only memory because nobody would even imagine that you could have a computer program that wasn’t

even representable as bits. (Appel 2012)

Both Hopper and Appel were using the historical actor ‘Howard Aiken’ and ‘history’ in general to make a case for their own

research aspirations. I view Hopper as a pluralist; in her 1978 keynote address, she repeatedly encouraged a multitude of

programming styles as opposed to ‘trying to force’ every practitioner into ‘the pattern of the mathematical logician’:

[Hopper:] I’m hoping that the development of the microcomputer will bring us back to reality and to recognizing that

we have a large variety of people out there who want to solve problems, some of whom are symbol-oriented, some of

whom are word-oriented, and that they are going to need different kinds of languages rather than trying to force them

all into the pattern of the mathematical logician. A lot of them are not. (Wexelblat 1981, p. 11, my emphasis)

I view Appel as a unifier; that is, as a theoretically-inclined researcher who seeks unifying principles to further his research.

Appel’s 2012 address was all about the importance of mathematical logic in computing and thus, unsurprisingly, about Turing

and von Neumann’s allegedly important roles in the history of the computer.
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In my eyes, Carr stood out in the 1954 ‘Symposium on Automatic Programming for
Digital Computers’ (Navy Mathematical Computing Advisory Panel 1954) in that he con-
sistently and repeatedly described both the true machine code and the pseudo code as a
‘language’.21 Carr viewed automatic programming as the problem of closing the ‘gap’
between the ‘external decimal language’ and the ‘intermediate binary language’, of recog-
nizing a ‘dual language system’ and the need to program the ‘translation between the two
languages’.22 Finally, the ‘lack of compatibility’ between existing digital computers was
an incentive to search for a ‘universal language’—an idea that was mostly, although not
solely, Gorn’s (Brown and Carr 1954, p. 89, Nofre et al. 2014).

Indeed, it was Carr’s later good friend, Saul Gorn, who—in the eyes of Grace Hopper—
stole the show at the 1954 symposium on automatic programming. ‘Looking forward to
what Dr. Gorn will tell us’, Hopper expressed her curiosity in her opening address towards
the development of a ‘universal code’ that can be taught to mathematicians and that each
computer installation can provide by means of an interpreter or compiler (Navy Mathemat-
ical Computing Advisory Panel 1954, p. 4–5). To counter the proliferation of ‘specialized
codes’, Gorn stressed in his talk the need for ‘a code more or less independent of the
machine’, so that the ‘artists, scientists, and professions can then return to a common
language and creative thinking’.23

During the first half of the 1950s, Gorn worked at Aberdeen Proving Ground where
three ‘general purpose machines’ were in use simultaneously: the ENIAC, EDVAC, and
ORDVAC. This diversity in machinery prompted a ‘universal coding’ experiment. And so
Gorn developed a ‘general purpose common pseudo-code’ that could serve as input to both
the EDVAC and the ORDVAC (Gorn 1959, p. 6).

3.2. Loop control
At the symposium, Gorn enumerated four machine requirements that had to be met in

order to provide for a universal code, and he did this by referring to Carr’s prior research
on loop controlled machines—research that I have yet to come across in primary sources.
Gorn’s account, reproduced below, serves to back up my conjecture that up and til around
1954 Carr and Gorn did not view loop controlled computers as practical realizations of
universal Turing machines.

The first machine requirement to obtain loop control, Gorn said, was due to the uni-
versal code being ‘translatable by the machine into the machine language’. Therefore, the
machine had to be able to ‘construct and adjust its own commands’.24 To do the latter, ‘[w]e
will therefore assume that commands are stored internally just like other words, so that the
only way in which a word is recognized as a command is that it reaches the control circuits
through the sequencing of previous commands. (In the terminology of J.W. Carr III, we

21 An anonymous reviewer is quite right in noting that the words ‘In my eyes’ run the risk of judging Carr’s work in anticipation

of later ways of thinking. To rectify this, I include this footnote as a disclaimer (which has another, intended, effect than simply

removing the quoted words from the narrative).
22 See Brown and Carr (1954, p. 85). While it was common practice to refer to the ‘universal language of mathematics’ and

while it was customary to associate a language with machine code, as in the words ‘machine language (ML)’, it was in 1954

still uncommon to describe the pseudo code of a computer as a ‘language’. Brown and Car did consistently do this in their

joint paper (—Backus and Herrick came in a close second at that same symposium). And, as Nofre et al. point out, the words

‘programming language’ in fact only entered the computing arena during the mid-1950s (Nofre et al. 2014).

Nofre et al. state however that already by the early 1950s the translation from a mathematical language to ML had ‘become a

central metaphor used to make sense of the activity of programming’.
23 See Gorn (1954, pp. 74–5). Nofre et al. describe the origins of the idea of a universal code, going back to C.W. Adams of MIT

in 1951.
24 Note that Gorn made this implication at a time when computer storage was limited.
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are requiring a Type II Variable Instruction Machine.)’.25 In addition to common storage,
the machine should also have ‘the other two properties described by Carr as necessary for
“loop control”, namely that they be able to transfer control out of sequences, and that they
be able to make decisions’. Finally, as a fourth requirement, the machine should be capable
of carrying out elementary commands, such as ‘adding, multiplying, subtracting, extract-
ing a digit, taking absolute values, taking negatives, shifting digits, and, most elementary
of all, stopping, reading, writing, and generally transferring information from one place to
another.’26 To do this, the machine should have ‘one or more forms of erasable internal
storage’ (Gorn 1954, pp. 76–7, my emphasis).

In later years, machines were simply said to have ‘loop control’ if they possessed three
properties: ‘common storage, erasable storage, and discrimination’.27 These properties
allowed recursive problems to be programmed iteratively instead of being programmed
as straight lines of code. For example, instead of coding the summation S = ∑n

i=1 xi as a
straight line of code—as in

s1 = x1

s2 = s1 + x2

s3 = s2 + x3

· · ·
sn−1 = sn−2 + xn−1

sn = sn−1 + xn

S = sn

—loop control allowed the summation S to be programmed iteratively on the basis of the
following three equations

s1 = x1,

si+1 = si + xi+1 (i = 1, 2, . . . , n − 1),

S = sn.

The sequence of values i = 1, 2, . . . , n − 1 indicates that si+1 = si + xi+1 had to be per-
formed for each value of i from 1 through n − 1. The crux was that only one computer
instruction was stored to correspond to si+1 = si + xi+1. The machine modified the addi-
tion instruction to perform the addition over and over again the required number of times.
The machine was also able to decide when it had performed an addition a proper number
of times (Grabbe et al. 1959, pp. 2–46). In other words, the ‘thinking’ machine—using
Berkeley’s terminology (Berkeley 1958, p. 5)—could work autonomously.28

25 As the 1950s progressed, Carr and Gorn refined their expositions. For example, ‘compilers’ did ‘not absolutely require their

machines to possess common storage of instructions and the data they process’ but they were ‘considerably simpler when

their machines’ did have this property (Gorn 1957, p. 254, my emphasis).
26 This fourth requirement, by itself, already indicates quite strongly that Carr and Gorn were not pursuing logical minimalism à

la Turing and van der Poel (cf. De Mol and Bullynck 2012).
27 See Gorn (1957, p. 254). These properties were sufficient (but not necessary) for realizing a practical version of a universal

Turing machine. Note, again, that I am making the theoretical connection here instead of the historical actors. Carr and Gorn

had the knowledge to defer this conclusion themselves, but I conjecture that they were not reasoning along these lines at all,

during the first half of the 1950s (and possibly throughout their whole careers).
28 Machines that were not based on the principle of common storage of numbers and instructions were instructed differently than

those that did possess loop control. The Swiss numerical analyst Rutishauser, for example, used (a modification of) Zuse’s
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3.3. Kleene’s Introduction to metamathematics
Practically oriented as they were, Carr and Gorn were also theoretically inclined, try-

ing hard to make connections between their loop controlled machines and mathematical
logic. One book that clearly had an impact on their thinking was Kleene’s Introduction to
Metamathematics (Kleene 1952). According to Carr, automatic programmers had to deal
with ‘the generation of systems rather than the systems themselves’, and with ‘the “genera-
tion” of algorithms by other algorithms’, and hence with concepts akin to metamathematics
(Brown and Carr 1954, p. 89). Gorn, in turn, described the machine requirement of com-
mon storage by saying that ‘the language of the machine includes its own syntax, so that
not only may the machine be directed to tell us something, but it may also be directed to
tell us something about the way in which it tells us something’. For example, the machine
could, besides generating the output of a calculation, also print out ‘the storage locations
chosen for the key commands and variables’, and, by doing so, tell the programmer some-
thing about the way it computes (i.e. the way in which it tells something). Gorn linked this
to the ‘quasi-paradoxical properties, as revealed in the researches of Gödel’ (Gorn 1954,
pp. 75–6).

Gorn continued appropriating ideas from metamathematics in a 1955 technical report,
which he distributed to several colleagues, including Carr, Perlis, Juncosa, Young, Herman
Goldstine, and the logician Barkley Rosser (Gorn 1955). On the one hand, Gorn remarked,
every computational procedure by an automatic machine ‘must follow the steps of a con-
structive proof’.29 On the other hand, Gorn argued, ‘every constructive existence proof,
with a few slight modifications, provide[s] a possible method of solution. (What we have
just said is an intuitive way of stating “Turing’s Thesis”. See reference (Kleene 1952))’.30

Later on in his report, Gorn described an ‘ideal general purpose machine’ as one that is

effectively equivalent to a ‘universal Turing machine.’ (See reference Turing 1936.
The universal Turing machine can copy the description of any special purpose
Turing machine and imitate its operation by means of these copied specifications.)

By referring to a universal Turing machine, Gorn made clear that, to him in 1955, an ‘ideal’
machine had unlimited storage capacity. Existing machines were, however, not ideal in
that they could not store exact real numbers but only finite approximations of them. This
deficiency, Gorn noted, could, without additional precaution on behalf of the programmer,
easily result in computing errors.31

To summarize, by 1955, Carr and Gorn were, at times, viewing a universal Turing
machine as a conceptual abstraction of a loop controlled computer.

3.4. ‘General-purpose machines’
In a 1956 booklet The electronic brain and what it can do (Gorn and Manheimer 1956),

Gorn distinguished between ‘older machines’ in which ‘switches were set externally’ and
manually, and the newer ‘four-address machines’ like the EDVAC in which ‘each order
contains a part that automatically sets the switches for the carrying of the next order’. The
bottom line was never having to plug or unplug a single wire ever again. Because orders

Z4 machine through part of the 1950s, a machine that did not possess loop control. Although more research on Rutishauser

is required, it is already interesting to note here that only by 1963 did he see the need to program recursively in his field of

numerical analysis (1963) (see also Daylight 2011a, 2012a).
29 That is, in the finitist terms set forth by ‘intuitionist mathematicians such as Kronecker, Brouwer, and Weyl’ (Gorn 1955).
30 Some of Gorn’s 1955 insights were later published in his 1957 paper (Gorn 1957).
31 For Gorn, infinite memory represented the simplest case of analysis. This was similar to Curry’s reasoning (cf. Curry 1949,

Navy Mathematical Computing Advisory Panel 1956, p. 65) and unlike van der Poel’s insistence to view results from

mathematical logic solely in the setting of finite machines (cf. Daylight 2013c, van der Poel 1956).
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were coded as numbers, these newer machines gained ‘a flexibility and power that were
undreamed of only a few short years ago’ (Gorn and Manheimer 1956, p. 42, 58).

A year later, Gorn wrote a letter to his good friend Perlis who, as editor-in-chief of the
Communications of the ACM, published the letter on the first page of the very first issue
of the magazine (Perlis 1958). In that letter, Gorn continued reflecting on EDVAC’s design
which, he said, had ‘introduced the major step forward’ in computer history ‘of having a
common variable storage of instructions and data’.32 The ‘manipulation of hardware’ had
been replaced by the ‘programming of coded symbols’.

In his letter to Perlis, Gorn also recalled how ‘it has been recognized that all general
purpose machines, from Edvac on, are essentially equivalent, any one being capable of the
same end results as any other, with varying degrees of efficiency’.33 This recognition did
not happen overnight, nor did it become common knowledge to all researchers in automatic
programming.34 It was a few men like Carr and Gorn who repeatedly, during the 1950s,
tried to see the metamathematical—and in their eyes, grander—picture of their practical
accomplishments.

In the same spirit, Gorn noted that two fundamental principles had been recognized
in recent years.35 First, that hardware and programming were within limits interchange-
able. Second, that ‘our general purpose machines’ are equivalent with ‘a certain, as yet
ill-defined, universal command language’. During the late 1950s, Gorn, Carr, and Perlis
played leading roles in the USA in the development of the universal programming language
ALGOL 60.36

32 See Perlis (1958, p. 2). Besides Gorn in 1956, also Berkeley (1958, p. 5) discussed the importance of machines that have ‘loop

control’, and hence ‘think’, compared to the ‘non-thinking machines’. Contrast these observations with Akera’s claim that the

historiographical interest in the ‘stored-program concept’ really only started around 1964 with the emergence of theoretical

computer science (2007, p. 120).
33 Notice that Gorn excluded the ‘older machines’, such as the ENIAC. He was implicitly referring to all loop controlled com-

puters and to the principle of a common store in particular. According to Gorn, those machines provided the flexibility for the

development of a universal code.
34 Moreover, note that Gorn’s recognition was, strictly speaking, incorrect. We know, today, that also many of the ‘older

machines’ were ‘Turing complete’ as well. For example, it suffices to ‘wire in’ the program of a universal Turing machine and

then represent any (to-be-simulated) Turing machine program, along with working store, on punched paper tape—tape which

serves both as input and output for the calculation at hand. It is not a theoretical obstacle that the punched holes cannot be

removed (cf. Daylight 2012a, p. 22).

An anonymous reviewer has commented that

[E]ven if ENIAC was later identified as being Turing complete, the important historical thing is that the first machines

to be thought of as Turing complete, and to inspire the integration of Turing’s work into the growing field of computer

science, were modeled on EDVAC.

This assessment by the reviewer seems fair with regard to Gorn’s career. I have not given evidence to suggest that the claim

holds in its general form; that is, that it holds for other actors like von Neumann, van der Poel, Turing, and Wang. I would

not be surprised if von Neumann did connect the ENIAC to Turing’s 1936 universal machine around 1945, thereby (partially)

contradicting the reviewer’s comment in its general form. In this regard I also present Priestley’s words which I think nicely

summarize a complementary part (of the total discussion):

None of the writings originating from the Moore School group mention a logical or theoretical rationale for the

introduction of the stored-program concept. It remains a possibility, of course, that the idea was suggested by von

Neumann’s knowledge of Turing’s work, but even if that was so, its inclusion in the design was justified by practical,

not theoretical, arguments. A logical pedigree for the idea would not, on its own, have been sufficient to ensure its

incorporation in the design without a detailed examination of its engineering implications. (Priestley 2011, pp. 138–9)

I conjecture that von Neumann knew that both the ENIAC and the EDVACwere ‘Turing complete’ and he knew that this insight

had no immediate practical relevance on his computer-building aspirations.
35 Thanks in no small part to the writings of Burks (cf. Daylight 2012a, p. 25).
36 See Nofre (2010). Gorn continued by stating that the as yet ill-defined, universal command language is ‘probably, in terms of

mathematical logic’ equivalent with ‘the class of expressions obtainable by “general recursive definitions”’. In the early 1960s,
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Gorn and Carr were engaged with Burks’s research agenda on cellular automata, and
with the overarching theme of thinking and learning machines. The ‘mathematical machine
of the future’, Carr wrote in 1959, ‘may well be an even more general purpose machine’
than what we have today (Carr 1959, p. 12, my emphasis). Carr’s dream was to achieve
‘Completely Automatic Programming’. This meant that, once a proper algorithm was
developed, it should be possible for the machine to decide on its own machine code. The
machine of the future ‘should be allowed to engineer its own construction’, in contrast to
present ‘fixed code machines’ that are ‘not self-encoding’ (Carr 1959, p. 11).

3.5. Emil Post
Researchers in the Soviet Union were also interested in the generation of algorithms

by other algorithms; that is, in the design of ‘compiler-producing compilers’. Versed in
Russian, and having visited several computer laboratories in the Soviet Union, Carr was
aware of the Russian state of the art. Particularly impressed by Markov’s 1954 book The-
ory of Algorithms (Markov 1954), Carr described Markov’s ‘language’ as something that
‘could be used directly as an input to compilers which are to perform symbol manipulation
(such as compiler-producing compilers)’. Moreover, Carr mentioned that several Russian
papers (Ianov 1957, Kantorovich 1957, Razumovskii 1957) discussed the ‘extension of
such language application to [··· ] other indirect reasoning processes [such] as theorem
proving, natural language translation, and complex decision making’ (Carr 1959, p. 190,
my emphasis).

Responsive to the books of Rosenbloom and Markov (and to the Russian literature in
general), Carr became attracted to the strong underlying kinship between Perlis’s work
on automatic programming and Chomsky’s research in mathematical linguistics (Chom-
sky 1955, 1956, 1957). The kinship was due in no small part to Post whose work, as Carr
observed, had influenced Perlis via Markov and Chomsky via Rosenbloom.37

The fields of automatic programming and machine translation were converging. Perlis’s
‘string language manipulator’, for example, was proposed to be used not only with ‘sym-
bolic operational programs’, but also with ‘algebraic language compiler-translators’ and
‘natural language translators’ (Carr 1959, p. 230). Likewise, Carr noted, the construction
of automatic dictionaries had ‘already begun’ with ‘algebraic languages as Fortran, Uni-
code, and GP at one end, and with the language translation experiment at the other [end]’
(Carr 1959, pp. 259–60).

3.6. Alan turing
In 1959, Carr used the notion of a ‘Universal Turing Machine’ to explain a fundamental

insight about automatic programming: one can ‘simulate a new not-yet produced digital
computer’ on an older computer, provided that there is sufficient storage for the simulation.
The first such situation, Carr reflected, ‘was the preparation of an interpretative program

the recursive-function theorist Henry Gordon Rice substantiated Gorn’s hunch by making an explicit connection between

ALGOL 60’s computational power and the class of general recursive functions (Daylight 2012a, Ch. 8). Important to note

here is that, once again, the theoretical insights came after programming practice.
37 See Carr (1959, p. 230, 259). Post’s work was, together with Davis’s (1958) book, also largely responsible for the advent

of ‘decision procedures’ (Carr 1959, p. 223, 225) in automatic programming, automata theory, and mathematical linguistics

in general—a topic that lies outside the scope of this article but which is very relevant for understanding the emergence of

(what many people seem to call) ‘theoretical’ computer science. It was researchers in computational linguistics (like Chom-

sky, Bar-Hillel, and especially Perles and Shamir) and soon-to-be-called theoretical computer scientists (like Floyd, Ginsburg,

Greibach, Rabin, Rice, and Scott) who demonstrated a thorough reception of Turing’s work and especially Post’s ‘corre-

spondence problem’ during the late 1950s and 1960s (see, e.g. Bar-Hillel et al. 1961, Ginsburg and Rice 1962, Rabin and

Scott 1959, Knuth and Daylight 2013).
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simulating the IBM 704 on the IBM 701 before the former was completed’ (Carr 1959,
p. 236, 239).

Much in line with Carr and Gorn’s 1954 reception of metamathematics and self-
referential arguments in particular, Carr elaborated on the idea of having a computer
simulate itself .

If one universal machine can simulate any other machine of a somewhat smaller
storage capacity (which is what Turing’s statement on universal machines means),
it should therefore be possible for a computer to simulate a version of itself with a
smaller amount of storage.

The practical implication of self simulation, Carr continued, is that it allows programs to
be run that ‘would perform in the standard fashion, and at the same time print out pertinent
information such as location, instruction, previous contents of [the accumulator], and the
previous contents of the address of the instruction’ (Carr 1959, p. 240).

Insights into interpreters, compilers, and what we today call program portability was, in
short, what a universal Turing machine had to offer to Carr and some of his space cadets.38

Also British space cadets, like Booth and Stanley Gill, used Turing’s 1936 paper to paint
the bigger picture of what they had been accomplishing independently of Turing, and what
they were going to accomplish with Turing’s theory as a road map. Booth accredited Turing
as the founder of automatic programming in his opening address at the Working Confer-
ence on Automatic Programming of Digital Computers, held at Brighton in 1959.39 It was
Turing, Booth proclaimed, who ‘first enunciated the fundamental theorem upon which all
studies of automatic programming are based’ (Goodman 1960, p. 1). Booth continued as
follows:

In its original form the theorem was so buried in a mass of mathematical logic
that most readers would find it impossible to see the wood for the trees. Simply
enunciated, however, it states that any computing machine which has the minimum
proper number of instructions can simulate any other computing machine, however
large the instruction repertoire of the latter. All forms of automatic programming
are merely embodiments of this rather simple theorem and, although from time to
time we may be in some doubt as to how FORTRAN, for example, differs from
MATHMATIC or the Ferranti AUTOCODE from FLOW-MATIC, it will perhaps
make things rather easier to bear in mind that they are simple consequences of
Turing’s theorem. (Goodman 1960, p. 1)

Booth was appropriating Turing’s work in the field of automatic programming, and he most
likely did this on the basis of Carr and Gorn’s earlier metamathematical insights.40

38 Note that some of these insights were already several years old. I am discussing Carr’s (1959) work here because I have yet

to come across much of his earlier writings.
39 Turing’s (1936) paper and his follow-up correction (1937) were reprinted in Appendix One of the proceedings (Good-

man 1960).
40 I conjecture that Turing never viewed his 1936 paper from this angle—that is, that he was not (and did not want to be) a

space cadet—and that Booth and other space cadets did not completely grasp Turing’s work. On the one hand, of course, that

is exactly where the force of Turing’s theory lies; it helped some researchers—and, more importantly, practitioners working

in or with industry—to see the wood for the trees in unanticipated ways. On the other hand, many practitioners were not

really helped by Turing’s work: there is no evidence suggesting that if Turing had not existed, that these practitioners would

then have been doing something else. Many advocates of various programming languages knew that these languages were

equivalent. Several languages were implemented by translating into another competing language. The real issue was their

suitability for human use. (I thank Parnas for discussing this matter with me.) Having said that, I now refer to Robert Bemer’s

experience with equivalent languages. In 1957 he wrote:
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Equally noteworthy, for the purpose of documenting Turing’s scholarly legacy, is
Booth’s historiographical remark about Turing’s 1936 paper.

Why was it, then, that Turing’s original work, finished in 1937 before any comput-
ing machine of modern type was available, assumed importance only some years
after machines were in common use? The reasons, I think, stem entirely from the
historical development of the subject. (Goodman 1960, p. 2)

According to Booth, the first computing machines were used almost exclusively by their
constructors and, hence, by people who were intimately aware of their internal construc-
tion. It took some years before the machines were used for scientific applications, devised
by people who were and wanted to remain ignorant of the machine itself and, hence, had
to rely on automatic programming techniques (Daylight 2012a, pp. 24–5).

3.7. Two metaphors
Apart from Booth’s opening address, also Gill discussed some practical implications

of Turing’s work at the 1959 workshop in Brighton in his talk ‘The Philosophy of Pro-
gramming’ [my emphasis]. On the one hand, Gill noted, automatic programming can be
viewed as a ‘language translation problem’; that is, ‘from the language used by the pro-
grammer into the actual instructions required by the computer’. This language metaphor,
perceived as novel by many in 1954, was a well established metaphor in 1959.41 On the
other hand, Gill continued, ‘another way of looking at automatic coding is based on the
idea expressed by Turing’; namely that ‘one computer can be made to imitate or to simulate
another computer’ (Goodman 1960, p. 182, my emphasis). Turing’s work, Gill continued,
implies that

an actual computer, together with a suitably designed program, [is] equivalent to
another computer which may not actually exist as a separate entity. When looked
at in this way, an automatic coding scheme behaves rather like the skin of an onion,
which if removed, reveals another onion underneath. (Goodman 1960, p. 182)

Gill articulated this onion-skin metaphor in terms of the words ‘hierarchies of coding
schemes’ and ‘hierarchy of programming languages’. To explain this hierarchy, Gill made
an analogy with a hierarchy of natural languages. An English man may, at a later stage of
his life, supplement his native language with a glossary of terms related to his profession,
say, nuclear physics. Then, when studying a particular topic in nuclear physics, he might
further supplement his language with a list of particular symbols and definitions, and so on.
Likewise, for a computer which is supplied with coding scheme No. 1, one can supplement

Although the ultimate in language does not exist yet, we can console ourselves meanwhile with compatible (as against

common) language. There is much current evidence that existing algebraic languages are all mappable into one another

by pre-processors. (Bemer 1958, p. 115, Nofre et al. 2014)

Bemer’s words make me conclude that some researchers were in need of a solid, theoretical, unifying principle, such as the

universal Turing machine or the universal programming language ALGOL. Others were satisfied with experimental evidence.

My conclusion here is merely another way of expressing my respect for the multitude of personal styles in tackling technical

problems (—a topic that I have discussed at length with Peter Naur (Daylight 2011b)). Unsurprisingly, it was the theoretically-

inclined space cadets (like Carr, Gorn, and Perlis) who talked about some implications of Turing’s work during the 1950s.
41 In line with Nofre et al. (2014), I am introducing the word ‘metaphor’ here instead of the historical actors. Nofre et al. elegantly

discuss the origins of the metaphor, going back to postwar cybernetics and Stibitz’s role in 1947 in this regard. I take gentle

issue with their supposition that the language metaphor had become a central metaphor in the computer programming arena

by the early 1950s. Carr and his space cadets were few in number, exactly because they took the language metaphor seriously.
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it in turn with scheme 1a or scheme 1b, ‘each adapting the system in a little more detail to
some particular class of problems’.42

By 1960, Gorn was preaching about languages and Turing machines all over the
place. He called his research agenda ‘Mechanical Languages and their Translators’ and
he described his agenda in terms of the words: ‘decidable languages’, ‘universal mechani-
cal languages’, and ‘universal formal mixed languages’.43 Most striking (to the historian)
is his summarized curriculum of Electrical Engineering (1959–1960) in which he used the
words ‘Turing machine’ three times(!) and, specifically, as follows:

• Digital Computers—Engineering Logic
(i) Elements of number theory; Turing machines and the foundations of computa-

tion theory; [··· ]
• Theory of Automata

(ii) Advanced problems in varieties of automata, including combinatorial nets,
sequential nets, and Turing machines. Languages for describing the behavior
of automata. A brief account of recursive function theory, formal axiomatic
systems and Goedel’s theorem; the relation of these to automata and their sig-
nificance for an understanding of the general nature of machine computation.

• Introduction to Digital Computers: Systems and Devices
(iii) Principles of mechanization of computations derived from special and uni-

versal Turing machines. General purpose computers: system organization,
input-output, logic, storage, and memory devices and timing. [··· ] (University
of Pennsylvania 1960, pp. 33–8)

Clearly, to Gorn and Carr, Turing machines did not solely belong to the domain of automata
theory. Turing machines were also relevant in the practical context of automatic program-
ming. And, as we have seen, other automatic programmers, like Booth and Gill, were also
delivering speeches about some practical implications of Turing’s theoretical work, during
the late 1950s.44

4. Half a century later
Like Booth and Gorn in the 1950s, computer scientists in the twenty-first century have
the tendency to construct a set of ‘foundations’ for computer science in which ideas and
events that had not been understood as connected when they happened are retrospectively
integrated. (This, I believe, is characteristic of scientific progress!) Subsequent generations

42 See Goodman (1960, p. 186). Regardless of whether Gill was the first to articulate the onion-skin metaphor, it should at least

not go unnoticed here that hierarchical design would become a hot research topic in later years. In what I take as support for

my narrative, Priestley’s ‘The Invention of Programming Languages’ (Priestley 2011, Ch. 8) suggests that (i) men like Turing

in 1951 and Wilkes in 1952, and others understood the idea of ‘an interpretive routine enabling one machine to simulate

another’ and that (ii) in later years, Booth, Gill, and others associated the universal Turing machine concept with interpreters

for high level programming languages (Priestley 2011, pp. 191–2).
43 See University of Pennsylvania (1960, p. 29). Gorn’s technical reports from the 1960s and onwards were all about: Chomsky—

Algol—Turing—Gödel—Wang—Curry—Carnap—Quine—Rosenbloom—··· and so on.
44 There are other examples. Philip R. Bagley, for instance, connected the Universal Computer-Oriented Language (UNCOL) to

Turing’s work. I take his understanding of Turing’s work to be weak (and without much practical significance to him), as his

words from 1960 partially indicate:

If UNCOL can express the basic computing steps required by a [universal] Turing machine, then since all present-day

computers are equivalent to [finite realizations of universal] Turing machines, it can lay claim to being ‘universal’

from the standpoint of computation alone. [··· ] The limitation of UNCOL that we are really concerned with is whether

or not we can achieve tolerable efficiency of execution [··· ] (Bagley 1960b, p. 21) [See also Bagley 1960a]
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of computer scientists then tend to assume that these things have always been related. The
connection between universal Turing machines and computers is one notable example. On
the other hand, critical, self-reflecting, questions are put into the open every now and then.
For example, the question ‘Why are we celebrating Turing?’ was asked at several Turing
events in the year 2012, the centennial of Alan M. Turing. Nobody gave an historically-
accurate answer however, hence my incentive to write the present paper.

From a sociological perspective, I postulate that a majority of researchers gathered
together in 2012 to celebrate their common belief that theory really does come before
practice: mathematics and logic are indispensable in computing; that is, after all, what von
Neumann and Turing have shown us, is it not? Or, as Robinson puts it:

We can today see that von Neumann and Turing were right in following the logical
principle that precise engineering details are relatively unimportant in the essen-
tial problems of computer design and programming methodology. (Robinson 1994,
p. 12)

Many researchers, including myself, concur with the idea that one should first grasp
the logical principles (of, say, a software project) before working out the ‘engineering’
details. But I object when people, and even the community at large, rephrase history in
support of their cause. Robinson, for example, also writes that ‘Turing’s 1936 idea had
started others thinking’ and that ‘[b]y 1945 there were several people planning to build
a universal [Turing] machine.’ (Robinson 1994, p. 10). But, in fact, most people during
the 1940s did not know what a universal Turing machine was, nor had they come across
Turing’s 1936 paper or a recast version of his work.

Another example of myth creation is due to Cooper. He writes that

The universal [Turing] machine stored programs and so gave us an understanding
of the modern stored-program computer before anyone had even built a real one.
(Cooper 2012, p. 777, original emphasis)

Thus, according to Cooper, theoretical insights led to practical achievements. I have
given ample evidence in this article to suggest that he’s got the story backwards. The
theoretical insights came after years of practical work, and, moreover, by theoretically
inclined programmers who were few in number.

[continued:] This caused all sorts of problems. [··· ] It was easy to get the math-
ematical overview. The problem was to match it up with reality. And this was a
problem with a practical aspect. Even a toy avatar of the abstract machine was hard
to make. The engineers eventually came up with clever solutions to the problem:
the EDVAC in Pennsylvania, the Manchester ‘Baby’, Maurice Wilkes’s EDSAC,
and the Pilot ACE growing out of Turing’s own attempts to build a computer at the
National Physical Laboratory (NPL). (Cooper 2012, p. 777)

Here we have a beautiful example of how myths are created and sustained. Cooper, a
main organizer of several Turing events in 2012, is painting a romantic, yet historically
inaccurate, picture of Turing’s role in the history of computing. But, if you disagree with
the previous passage and, hence, do not share the common prevailing belief that Turing is
the inventor of the computer and that all engineers were depending on him, then you are in
for some peer pressure.

[continued:] But to this day, there are engineers who find it hard to excuse (or even
understand) Turing’s reputation as the ‘inventor’ of the computer. (Cooper 2012,
p. 777)
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Alas, also trained historians have fallen into the trap of merely asserting, rather than
proving, Turing’s influence on computer building. Lavington, for example, writes in his
recent book Alan Turing and his Contemporaries: Building the world’s first computers,
that

Turning theory into practice proved tricky, but by 1948 five UK research groups
had begun to build practical stored-program computers. (Lavington 2012, p. xiii,
my emphasis)
All of the designers of early computers were entering unknown territory. They
were struggling to build practical devices based on a novel abstract principle—
a universal computing machine. It is no wonder that different groups came up
with machines of different shapes and sizes, [··· ] (Lavington 2012, p. 8, original
emphasis)

These words contradict what ironically seems to be Lavington’s main thesis: that Turing
had almost no direct influence in computer building (Lavington 2012, Ch. 8). A simi-
lar, yet more severe, critique holds for Mahoney’s entire oeuvre, Histories of Computing
(Mahoney 2011), which I have presented elsewhere (Daylight 2013a).

As the previous examples illustrate, getting Turing’s legacy right is not easy. By hardly
mentioning Turing in their joint book, Computer: A History of the Information Machine
(Campbell-Kelly and Aspray 1996), Campbell-Kelly and Aspray put Turing into the
right context. Similar praise holds for Akera’s prize-winning book Calculating a Natural
World: Scientists, Engineers, and Computers During the Rise of U.S. Cold War Research
(Akera 2007). (A critical side remark here is that Akera’s book is also about computing in
general and, as the present article shows, Turing’s work did play an important role in this
more general setting.) The research of De Mol (2009), Olley (2010), Priestley (2011, 2008),
Daylight (2012a, 2013c), and Haigh (2014), Haigh et al. (2014a,b) all attempt to

(1) clarify what we today call the ‘stored program’ concept, and/or
(2) put Turing’s and von Neumann’s roles into context by explaining what these men

did do or how their work did influence other computing pioneers.

Finally, although Mahoney uncritically documented Turing’s legacy (Daylight 2013a),
he also presented an impressive coverage of the rise of ‘theoretical computer science’—a
topic that, to the best of my knowledge, has so far only been scrutinized by Mounier-
Kuhn (2012a,b,c), Mounier-Kuhn (2014). Two findings of Mounier-Kuhn that complement
the present article are, in brief, that

(1) Turing’s work, and modern logic in general, only gained importance in French
computing during the 1960s, and

(2) it is a ‘founding myth of theoretical computer science’ to believe that the ‘Turing
machine’ was ‘a decisive source of inspiration for electronic computer designers’
(Mounier-Kuhn 2012c).

5. Closing remarks
The existing literature is rather vague about how, why, and when Turing assumed the

mantle of ‘the father of computer science’. This article has partially filled that gap by show-
ing that Turing’s 1936 paper became increasingly relevant to the influential ACM actors
Carr and Gorn around 1955. Alan Perlis’s reception of Turing has yet to be documented in
future work.

Carr and Gorn were inspired by re-cast versions of Church, Post, and Turing’s original
writings. These versions included:



Turing—the Father of Computer Science 223

• Rosenbloom’s 1950 Elements of Mathematical Logic (Rosenbloom 1950),
• Kleene’s 1952 Introduction to Metamathematics (Kleene 1952), and
• Markov’s 1954 Theory of Algorithms (Markov 1954).

In the late 1950s, also British automatic programmers, including Booth and Gill,
appropriated ideas from Turing’s 1936 paper.

All aforementioned men were attracted to the ‘universal Turing machine’ concept
because it allowed them to express the fundamental interchangeability of hardware and
language implementations (of almost all computer capabilities). Unsurprisingly, insights
such as these came during a decade of cross-fertilization between logic, linguistics,
and programming technology—a decade in which computing was still a long way from
establishing itself as an academically respectable field.

Just like some space cadets, also the reader may have noticed a strong similarity
between Weaver’s 1949 ‘interlanguage’ or ‘universal language’ on the one hand, and
the notion of an intermediate machine-independent programming language on the other
hand.45 Another example of technological convergence is the pushdown store which, as
Oettinger (1961) explained in his paper, served a unifying technological role across the
domains of automatic programming and machine translation.

Understanding the birth of computer science—a term which I use here for the first
time—amounts to grasping and documenting the technological convergence of the 1950s.
On the theoretical side of this convergence, Church’s, Turing’s, and especially Post’s work
became increasingly relevant, a topic that concerns the notion of undecidability (see Day-
light 2012a, Ch. 2, Knuth and Daylight 2013) and which lies outside the scope of the
present article. On the practical side, the universal Turing machine played a clarifying role
in that it helped some experienced programmers, the space cadets, to grasp the bigger pic-
ture of what they had been accomplishing in conformance with the language metaphor (—a
metaphor that became well established during the 1950s). To be more precise, the universal
Turing machine paved the way for the complementary onion-skin metaphor, thereby allow-
ing the space cadets to view their translation problem (from one language into another) in
the interrelated, operational, setting of machines.46 In modern terminology: the program-
ming languages ALGOL 60 and FORTRAN can be viewed as equivalent computational
tools to that of a universal Turing machine. From this specific theoretical perspective, it
does not matter which programming language or which computer one prefers, they are all
equivalent and (to a very large extent) interchangeable.

By the end of the 1950s, two metaphorical seeds had thus been sown for future advances
in computer programming. The concepts of language and machine became increasingly

45 Weaver supported the idea of an indirect route: translate from the source language into an

as yet undiscovered universal language and then translate from that language into the target language (Locke and

Booth 1955, p. 2, 23). Likewise, Dijkstra (and others) supported a two-step translation of the universal programming

language ALGOL 60. First, translate the ALGOL 60 program into an intermediate machine − independent object language.

Second, process the obtained object program by an interpreter (which is written in the machine code of the target computer)

(Daylight 2012a, p. 68). Also UNCOL was based on this principle, which was

the design of a universal, intermediate language, independent of specific hardware but similar in character to MLs, as

a bridge over the growing gap between problem-oriented languages and MLs. (Charles Babbage Institute 1961, p. 2,

my emphasis)

46 In other words: not only did the space cadets associate the machine with an ‘ML’ and the pseudo code with a ‘programming

language’, they also began to view the programming language as a machine. Both metaphors together led to hierarchical

decompositions of software and hardware in which each level was characterized as both a machine and a language (cf.

Daylight To appear. English translation to appear.).
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interchangeable. Dijkstra in the 1960s, for example, frequently described a layer in his
hierarchical designs as either a language or, equivalently, as a machine.47 The origins of
Structured Programming are, in my opinion, firmly rooted in the language metaphor and
the onion-skin metaphor (Dahl et al. 1972, Ch. 1).

Viewing the universal Turing machine as a mathematical model of a general-purpose
computer, as Booth, Carr, Gill, and Gorn did in the second half of the 1950s, also meant
that the ideal general-purpose computer was one of infinite storage capacity. Nofre et al.
appropriately use the words ‘conceptualization of the computer as an infinitely protean
machine’ (Nofre et al. 2014, my emphasis) to describe this transformational point of view
but they do this without mentioning the pivotal role the universal Turing machine played in
this regard.48 Moreover, many historical actors never joined Gorn et al. in viewing comput-
ers as infinitely protean machines. Dijkstra, Parnas, van Wijngaarden, and others frequently
insisted throughout their careers not to ignore the finiteness of real machinery, even when
reasoning abstractly about software.49

It was some mathematicians, most notably Carr, Gorn, and Perlis, who in the field
of automatic programming tried to seek unifying principles and who advocated making
a science. In 1958, for example, Carr explained his desire for ‘the creation of transla-
tors, techniques for using them, and, finally, a theory of such formal translators. [··· ]
The development of “automatic problem solutions” requires formalism, interchangeability
of procedures, and computability of languages if it is to become a true discipline in the
scientific sense.’ (Carr 1958, p. 2, my emphasis).

Carr, Gorn, and Perlis played a large part in helping form and shape the ACM during
the 1950s and 1960s. Under the initiative of Oettinger, the ACM chose to honor Turing
in 1965. This was well before Turing’s secret war work in England came into the open.
In other words, Turing’s influence was already felt in automatic programming, automata
theory, and other research fields before popular books were published about his allegedly
significant role in the makings of the first universal computers.

It was Babbage who, rightly or wrongly, was put front and center during the 1950s as
the father of the universal computer (cf. Alt 1958, p. 8). During the 1950s and 1960s, Tur-
ing was never portrayed as the father of the universal computer. Since the 1970s, popular
claims have been made, literally stating that Turing is the ‘inventor of the computer’ or
‘the inventor of the universal computer’. See the romantic accounts of Copeland (2012),
Davis (1988, 2000), Dyson (2012), Leavitt (2006, 2007), and Robinson (1994) for some
typical examples; see Burks’s fitting rebuttals (2001, 2002) and van Rijsbergen’s and
Vardi’s sober reflections on Turing’s legacy (1985, 2013).

‘What would Turing be doing today if he were still alive?’—a question that was posed
multiple times in celebration of Turing’s Centennial. He would be countering the now-
prevailing belief that he is ‘the inventor of the computer’!
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