
UvA-DARE is a service provided by the library of the University of Amsterdam (http://dare.uva.nl)

UvA-DARE (Digital Academic Repository)

When Technology Became Language: The Origins of the Linguistic Conception of
Computer Programming, 1950-1960
Nofre, D.; Priestley, M.; Alberts, G.

Published in:
Technology and Culture

DOI:
10.1353/tech.2014.0031

Link to publication

Citation for published version (APA):
Nofre, D., Priestley, M., & Alberts, G. (2014). When Technology Became Language: The Origins of the Linguistic
Conception of Computer Programming, 1950-1960. Technology and Culture, 55(1), 40-75. DOI:
10.1353/tech.2014.0031

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s),
other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating
your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask
the Library: http://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam,
The Netherlands. You will be contacted as soon as possible.

Download date: 23 Jan 2017

http://dx.doi.org/10.1353/tech.2014.0031
http://dare.uva.nl/personal/pure/en/publications/when-technology-became-language-the-origins-of-the-linguistic-conception-of-computer-programming-19501960(aa322682-e9ba-4fe6-8277-3956d45ee463).html

h n T hn l B L n : Th r n f
th L n t n pt n f p t r Pr r n ,
0 60

David Nofre, Mark Priestley, Gerard Alberts

Technology and Culture, Volume 55, Number 1, January 2014, pp.
40-75 (Article)

P bl h d b Th J hn H p n n v r t Pr
DOI: 10.1353/tech.2014.0031

For additional information about this article

 Access provided by Amsterdam Universiteit (22 Dec 2014 08:06 GMT)

http://muse.jhu.edu/journals/tech/summary/v055/55.1.nofre.html

http://muse.jhu.edu/journals/tech/summary/v055/55.1.nofre.html

Introduction

The second half of the 1950s saw the emergence of a new vision of how
computers were to be programmed. At the beginning of the decade, pro-
grammers had to express the instructions for solving a problem in obscure
numerical codes that were different for each machine. By the decade’s end,
however, they could write programs that included familiar mathematical
formulas, and, in some cases, even expect the same program to run on dif-
ferent machines, thanks to the development of systems like FORTRAN
and IT. Furthermore, professional and industrial bodies were putting for-
ward ambitious proposals for very powerful “programming languages,” as
the codes were now widely called, and some of these, notably ALGOL and
COBOL, were explicitly defined to be machine-independent notations. In

David Nofre is associated with the Centre d’Estudis d’Història de la Ciència, Universitat
Autònoma de Barcelona; Mark Priestley is an independent researcher based in London;
and Gerard Alberts is an associate professor of the history of mathematics and comput-
ing at the Korteweg-de Vries Institute for Mathematics, University of Amsterdam.
Nofre and Alberts’s contribution was developed as an element of the Software for
Europe project, as part of the European Science Foundation Eurocores Program “In-
venting Europe,” and co-funded by the Netherlands Organization for Scientific Re-
search (NWO 231-53-004). Research for this article was assisted by the award to Nofre
of a 2010 Lemelson Center Travel to Collections Award from the Smithsonian Institu-
tion and a 2009 Arthur L. Norberg Travel Award from the Charles Babbage Institute.
The authors thank Eden Medina for helpful comments on an early draft of this article;
Matthias Dörries, Helena Durnová, Hans Dieter Hellige, Janet Martin-Nielsen, and
Edgar Daylight for insightful comments on its early ideas; and the three anonymous ref-
erees and Suzanne Moon for providing constructive comments and suggestions. They
also thank Peggy Aldrich Kidwell for access to materials in the Computer Documenta-
tion Collection at the National Museum of American History, Smithsonian Institution,
Washington, D.C.

©2014 by the Society for the History of Technology. All rights reserved.
0040-165X/14/5501-0002/40–75

When Technology Became Language
The Origins of the Linguistic Conception of Computer
Programming, 1950–1960

DAV I D NO F R E , MA R K P R I E S T L E Y , a n d
G E R A RD A L B E R T S

40

04_Nofre_2nd 40–75.qxp_03_49.3dobraszczyk 568– 2/12/14 1:04 PM Page 40

NOFRE, PRIESTLEY, and ALBERTSK|KWhen Technology Became Language

41

parallel with this transformation, researchers began to conceive of pro-
grams and programming languages as being largely autonomous from the
machines; they were no longer seen as mere tools, but became available
objects of knowledge in their own right, a fact of great significance for the
emergence in the 1960s of the software industry and the discipline of com-
puter science.

In this article, we ask how it came to seem natural to think of program-
ming highly complex electronic devices as a linguistic activity, and we give
an account of the processes that led up to this conceptual transformation.1
At the core of the argument lies a shift in the metaphorical use of the term
language in connection with computers that took place in the mid-1950s in
the United States. With roots in the fascination with robots that pervaded
American culture before and during World War II, the language metaphor
entered modern computing vocabulary at the end of the war as part of a
cybernetic discourse that described modern computers as if they were semi-
autonomous, almost human-like agents.2 Early volumes on computing
machinery, such as E. C. Berkeley’s Giant Brains, or Machines That Think
(1949) and B. V. Bowden’s Faster Than Thought (1953), expressed the same
fascination.3 The new automatic calculators seemed to embody a form of
intelligence and language was considered to be an intrinsic attribute of these
agents, on a par with their material components. Specialists like Arthur
Burks and George Stibitz would describe programming as a form of com-
munication, involving translation from human language into “the language
the machine can understand.”4 During the second half of the 1950s, how-
ever, the language metaphor lost its anthropomorphic connotation and ac-
quired a more abstract meaning, closely related to the formal languages of
logic and linguistics, in addition to greater epistemic impact.5 We argue that

1. It is beyond the scope of this article to discuss the suitability of the use of the lan-
guage metaphor in computer programming, and the relation among programming lan-
guages, formal languages, and natural languages.

2. Chihyung Jeon, “Flying Weather Men and Robot Observers”; Bernadette Longo,
“Metaphors, Robots, and the Transfer of Computers to Civilian Life.” For a contrast
with the more stoical, even fearful, British accounts in the press, see Angus McLaren,
Reproduction by Design ; and Mark D. Bowles, “US Technological Enthusiasm and
British Technological Skepticism in the Age of the Analogue Brain.”

3. Edmund C. Berkeley, Giant Brains, or Machines That Think; B. V. Bowden, ed.,
Faster Than Thought.

4. The expression is quoted from the preface of Arthur W. Burks, Herman H.
Goldstine, and John von Neumann’s Preliminary Discussion of the Logical Design of an
Electronic Computer Instrument. A few months earlier, the same expression was used in
an anonymous article featured in Science News-Letter describing Vannevar Bush’s
wartime work at MIT on differential analyzers; see “Mathematical Machine.” This
understanding of the language metaphor came to be embedded in the expression
machine language, which was in use as early as January 1947; see George R. Stibitz, “A
Manual of Operation for the Automatic Sequence Controlled Calculator,” 59.

5. In this article, we focus on the process of the acquisition of explanatory or epis-
temic power by the language metaphor, rather than on its capacity to shape thought or

04_Nofre_2nd 40–75.qxp_03_49.3dobraszczyk 568– 2/12/14 1:04 PM Page 41

T E C H N O L O G Y A N D C U L T U R E

JANUARY

2014

VOL. 55

42

this transformation was related to the appearance of the commercial com-
puter in the mid-1950s, and in particular, to the increasing heterogeneity of
computer installations at the time. The early users of the term programming
language were principally computer-user groups and computer-installation
managers attempting to bring about the cross-machine compatibility of
programs; common or universal notations would facilitate the exchange of
programs among and within organizations, and would also provide a suit-
able vehicle for teaching programming in universities. Managers and edu-
cators thus no longer found it helpful to think of programming notations as
attributes of individual machines, and began to draw on the disciplines of
symbolic logic and linguistics to develop models of intelligibility that would
enable abstraction away from the machine and toward the development of
free-standing notations. This process reached its climax with the develop-
ment, between 1958–60, of ALGOL for scientific computation and COBOL
for data-processing. During the next decade, linguists appropriated con-
cepts developed to study programming languages and applied them to the
analysis of natural languages, at the same time as molecular biologists found
that programming metaphors opened up new avenues of research, such as
the interpretation of DNA as “code” or “language.”6

Early attempts to write the history of programming languages centered
around accounts of the development of individual languages, with a strong
focus on technical details.7 Later historiography has taken a wider per-
spective, situating the emergence of programming languages in the 1950s
within the general context of the evolution of computing, and viewing it as
a response to the mounting complexity and rising costs of the program-
ming process.8 Meanwhile, historical studies on the origins of artificial

discourse. For a discussion of this, see Matthias Dörries, ed., “Language as a Tool in the
Sciences.” With regard to formalization, a similar process took place in other disciplines,
such as economics, philosophy of science, linguistics, and psychology, as part of the rise
of formal logic as one of the main pillars of the U.S. cold war regime of knowledge. See
Philip Mirowski and Esther-Mirjam Sent, “The Commercialization of Science and the
Response of STS,” table 1; and Dominique Pestre, Science, Argent et Politique, chap. 1.

6. William John Hutchins, Machine Translation; Lily Kay, Who Wrote the Book of
Life?

7. ACM, Proceedings of the Third ACM SIGPLAN Conference on History of Pro-
gramming Languages; Thomas J. Bergin and Richard G. Gibson Jr., History of Program-
ming Languages II; Richard L. Wexelblat, History of Programming Languages I; Donald
Knuth and Luis Trabb Pardo, “The Early Development of Programming Languages”;
Jean E. Sammet, Programming Languages; Saul Rosen, “Programming Systems and Lan-
guages.”

8. Nathan Ensmenger, The Computer Boys Take Over; Paul E. Ceruzzi, A History of
Modern Computing; Martin Campbell-Kelly and William Aspray, Computer. Further-
more, recent trends include the approach to the history of programming languages from
the user-centric perspective: Gard Paulsen, “Software in Telecommunications and the
Programming Language Chili, 1974–1999”; or in the context of research funding poli-
cies: Jan Rune Holmevik, Inside Innovation.

04_Nofre_2nd 40–75.qxp_03_49.3dobraszczyk 568– 2/12/14 1:04 PM Page 42

NOFRE, PRIESTLEY, and ALBERTSK|KWhen Technology Became Language

43

intelligence, cognitive psychology, and formal structural linguistics—
research areas strongly sponsored by the U.S. military—opened yet other
perspectives.9 These recent studies suggest a connection among these
fields, the process of formalization of the language metaphor in program-
ming, and the transformation of the computer into an information
machine.

All of these approaches, however, take the linguistic nature of com-
puter programming for granted. Indeed, it is surprising how rarely lan-
guage appears in the list of relevant programming metaphors, despite peri-
odic attempts to envisage program code as a form of literary expression.10
It is as if we have become so accustomed to think of programming lan-
guages as languages that we forget that this analogy has its own history. In
this article, we aim to open the black box of this metaphor to show how the
very notion of a programming language emerged in connection with
attempts to disembody programming knowledge as a response to the sud-
den increase in the variety of computers.

Many different interests came together in this complex transformation.
Organizations began to look for ways of moving programs among ma-
chines of different types in order to protect and capitalize on their prior
investment in programming. This process gained institutional support as
representatives of computing facilities from the aircraft industry and the
military began to form user groups to search for ways of coping with the
costs of operating different machines and upgrading to new models. At the
same time, staff members in academic computing centers worked to estab-
lish a space within which the free exchange of information and collabora-
tion associated with military funding could be sustained as the develop-
ment of computers became the preserve of large commercial companies.

All these trends led to an increased understanding of programming as a
machine-independent activity, and, as a result, the language metaphor
acquired an increasingly abstract nuance. This transformation cleared the
way for the emergence, in the early 1960s, of computer science as a field and
of software as a distinct entity. Programming languages became new epis-
temic objects that were no longer connected to a particular machine or

9. Ronald Kline, “Cybernetics, Automata Studies, and the Dartmouth Conference
on Artificial Intelligence”; Randy Allen Harris, “Chomsky’s other Revolution”; Janet
Martin-Nielsen, “Private Knowledge, Public Tensions”; Marcus Tomalin, Linguistics
and the Formal Sciences; Hunter Crowther-Heyck, “George A. Miller, Language, and the
Computer Metaphor of Mind”; Paul N. Edwards, The Closed World.

10. Note the absence of the language metaphor in Timothy R. Colburn and Gary M.
Shute, “Metaphor in Computer Science”; Alan F. Blackwell, “The Reification of
Metaphor as a Design Tool”; and Gerald J. Johnson, “Of Metaphor and the Difficulty of
Computer Discourse.” Even when language becomes the focus of the analysis, it is
mostly in terms of human–machine communication; see Jörg Pflüger, “Language in
Computing.” On code as literary expression, see, for example, Donald E. Knuth, Literate
Programming.

04_Nofre_2nd 40–75.qxp_03_49.3dobraszczyk 568– 2/12/14 1:04 PM Page 43

T E C H N O L O G Y A N D C U L T U R E

JANUARY

2014

VOL. 55

44

computer laboratory, thus enabling the nascent field of computer science to
objectify its topics of study—namely, algorithms—and to develop a full dis-
ciplinary apparatus, including a conceptual toolkit, standard terminology,
and an ever-increasing range of textbooks and other expository material.11

This article traces the genealogy of the language metaphor in program-
ming, one of the most essential metaphors around which computer science
has been built. In doing so, it reflects the growing awareness among histo-
rians of technology of the crucial role of language in shaping and mediat-
ing our understanding of technologies.12 The emergence of programming
languages entailed not only a transformation in the understanding of the
activity of programming, but also in the way we think of the electronic dig-
ital computer. By abstracting away from the machine, programming lan-
guages and, more generally, software came to mediate our understanding
of what a computer is, leading eventually to the conceptualization of the
computer as an infinitely protean machine.13

The article also reflects the increasing interest in software history
among scholars from a variety of disciplines, ranging from historians
exploring the emergence of software as a distinct object and industry to
media studies scholars trying to understand the meaning of the technology
behind the visual culture of the new digital media. All are seeking to tease
out the diversity of beliefs, artifacts, tools, and practices concealed behind
the label software.14 Similarly, the article shows how in the late 1950s, spe-
cialists in computer programming began to conceive of their activity as a
proper and independent field of inquiry. In taking this step, they left be-
hind the understanding of programming as a form of communication with
the machine, involving the translation of a problem into a highly localized,
machine-specific code.

11. Disembodiment is a crucial step in the constitution of a body of knowledge into
proper science; see Steven Shapin, “The Mind Is Its Own Place.” Note again the paral-
lelism with the transformation of “chemistry” into a scientific discipline during the
nineteenth century, and the important role played by language in such a transformation;
see Bernadette Bensaude-Vincent, “Languages in Chemistry.” Ensmenger has convinc-
ingly argued for the importance of the concept of an algorithm in the creation of the
field of computer science, and its evolution toward a Kuhnian “normal science”; see
Ensmenger, The Computer Boys Take Over.

12. Carroll W. Pursell, “Technologies as Cultural Practice and Production,” 716–17.
A similar point is made in Peter Galison, “The Ontology of the Enemy,” 265.

13. We thank one of the anonymous reviewers for this observation.
14. Wendy Hui Kyong Chun, Programmed Visions; Ensmenger, The Computer Boys

Take Over; Michael S. Mahoney, “What Makes the History of Software Hard”; Matthew
Fuller, Software Studies; Martin Campbell-Kelly, From Airline Reservations to Sonic the
Hedgehog; Ulf Hashagen, Reinhard Keil-Slawik, and Arthur L. Norberg, History of Com-
puting; Thomas Haigh, “Software in the 1960s as Concept, Service, and Product.”

04_Nofre_2nd 40–75.qxp_03_49.3dobraszczyk 568– 2/12/14 1:04 PM Page 44

NOFRE, PRIESTLEY, and ALBERTSK|KWhen Technology Became Language

45

“The Language the Machine Can Understand”

Automatic calculators have long been viewed in anthropomorphic
terms by both their creators and the general public. In the nineteenth cen-
tury, Charles Babbage apologized for using anthropomorphic language to
describe his Analytical Engine, finding that its convenience and natural-
ness outweighed the possibly misleading connotations.15 A century later,
after the disclosure in the mid-1940s of wartime computing projects in the
United States, the popular press, as well as the scientists and engineers
involved in the building of computers, regularly described the new calcu-
lating devices as “robots” or “giant brains.”16

The reemergence of this analogy has roots in the fascination with
robots characteristic of U.S. society during the Great Depression. In this
period, robots were a notable feature in the world’s fairs of Chicago (1933–
34) and New York (1939–40), being portrayed as the incarnation of the
power of modern science and engineering.17 Expressions like “mechanical
brain,” “mathematical brain,” or even “robot” were already in use during
the period to describe, for example, Vannevar Bush’s differential analyzers
at MIT and Hollerith punched-card equipment.18 The development of
cybernetics, which viewed natural and artificial control mechanisms as
closely related species in the same genus, gave further strength to the anal-
ogy.19 As early as the 1930s, Alan Turing was arguing that computing
machines could be built to model features of the human brain, and in 1945,
John von Neumann presented the design of an electronic computer using
components that were explicitly modeled on biological neurons.20

Although contested, these anthropomorphic images were widespread
and represented more than a convenient analogy;21 they were based on a

15. Charles Babbage, “On the Mathematical Powers of the Calculating Engine,”
31.

16. Longo, “Metaphors, Robots, and the Transfer of Computers to Civilian Life”;
C. Dianne Martin, “The Myth of the Awesome Thinking Machine.”

17. Aristotle Tympas, “From Digital to Analogue and Back”; David E. Nye, Electri-
fying America, 342, 390; Robert W. Rydell, “The Fan Dance of Science.”

18. During the years 1930–45, one can find a significant number of articles in
Science News-Letter wherein the term robot is used to describe all kind of automatic
devices, including computing artifacts.

19. David A. Mindell, Between Human and Machine. Classic statements of the
cybernetic point of view are Arturo Rosenblueth, Norbert Wiener, and Julian Bigelow,
“Behavior, Purpose and Teleology”; and Norbert Wiener, Cybernetics or Control and
Communication in the Animal and the Machine.

20. Both Turing and von Neumann were closely involved in the early development
of cybernetics; see William Aspray, “From Mathematical Constructivity to Computer
Science,” 147–48, 225.

21. Attempts were routinely made by computer-builders and applied mathemati-
cians to downplay the significance of such analogies, and to reestablish the passive, tool-
like nature of automatic computers. The tension between these two positions reverber-

04_Nofre_2nd 40–75.qxp_03_49.3dobraszczyk 568– 2/12/14 1:04 PM Page 45

T E C H N O L O G Y A N D C U L T U R E

JANUARY

2014

VOL. 55

46

detailed functional equivalence that showed how the new machines could
replace the female human “computers” who had carried out the mechani-
cal aspects of large-scale computational tasks up to the 1940s.22 In 1952,
Grace Hopper explicitly declared that the current aim was “to replace, as
far as possible, the human brain by an electronic digital computer,” and
presented a general schema of the processes involved in carrying out a
mathematical operation, showing how it could be instantiated equally well
by a human or by a machine, such as Remington Rand’s UNIVAC.23

As a result, early developers and users endowed the computer with
forms of agency and autonomy, to a much greater extent than with other
kinds of calculators. This had consequences for the ways that the uses of
such machines, and in particular the tasks of coding and programming,
were discussed. In 1947, for example, George Stibitz, a mathematician and
developer of relay computers at Bell Labs, described computing machines
as having the ability to “understand mathematical language” and to “inter-
pret . . . symbolically represented operations in terms of the machine oper-
ations of which [they are] capable.” He went on to describe the self-check-
ing abilities of the computer as being like the kinesthetic sense possessed
by living organisms. In particular, writers trying to convey a sense of the
capabilities of the new machines often referred to computers “understand-
ing” certain notations or having a “vocabulary.”24 This reflected a concep-
tion that the mode of use of these new machines was, in important ways, a
matter of communication rather than simple deployment, a theme that
itself suggested connections with other aspects of the cybernetic project,
such as Claude Shannon’s ideas about information.25

However, with increasing experience, these pioneers soon recognized
that communication between humans and computers might not be com-
pletely straightforward. The communication problem came to be framed in
linguistic terms, and the notion of translation was naturally invoked as a
strategy for bridging the gap. Stibitz described an ideal computing ma-
chine as one capable of understanding any mathematical symbolism and

ated up through the 1950s. For example, in 1952, Grace M. Hopper could talk in anthro-
pomorphic terms about “educating a computer,” but two years later was attempting to
remove “the last remaining words of the ‘magic brain’ class” from a glossary of comput-
ing terminology. Two years after that, however, in 1956, programming specialist Saul
Gorn still found it natural to use the phrase electronic brain in a popular account of com-
puters. See Hopper, “The Education of a Computer”; Hopper et al., Glossaries of Terms,
22; and Gorn and Wallace Manheimer, The Electronic Brain and What It Can Do.

22. For example, Turing viewed human and mechanical computational agency as
being largely interchangeable; see his “On Computable Numbers.”

23. Hopper, “The Education of a Computer,” 243. For a similarly detailed analogy,
see Samuel R. Williams, “Bell Telephone Laboratories’ Relay Computing System,” par-
ticularly the pair of diagrams on p. 58.

24. George R. Stibitz, “The Organization of Large-Scale Computing Machinery,” 93,
96, and following pages.

25. Claude E. Shannon, “A Mathematical Theory of Communication” (both articles).

04_Nofre_2nd 40–75.qxp_03_49.3dobraszczyk 568– 2/12/14 1:04 PM Page 46

NOFRE, PRIESTLEY, and ALBERTSK|KWhen Technology Became Language

47

possessing an unlimited vocabulary, which would coincide with that of the
mathematician. Aware of the cost and complexity of such a project, how-
ever, he was ready to recognize that for a limited range of applications, “the
entire burden of translating from mathematics to machine language may be
placed on the operator.”26 There was a long tradition of considering math-
ematics in linguistic terms—for example, as the language of nature, as the
“grammar of science,” or, during the twentieth century, as a formal sym-
bolic system. With the anthropomorphic view of automatic calculators at
hand, specialists in computer programming quickly extended this linguis-
tic analogy to the expression of mathematical problems on the machines,
and to viewing the passage from mathematics to code as one of translation.

By the early 1950s, translation had become a central metaphor used to
make sense of the activity of programming (fig. 1). In 1954, for example,
the glossary of programming terminology produced by the Association for
Computing Machinery (ACM) defined a compiling routine as one that
“translates a program expressed in pseudo-code into machine code.”27

Similarly, specialists in computer programming started using the phrase
formula translation to denote attempts to generate machine code automat-
ically from standard mathematical notation.28 Occasional mentions were
made of the possibility of translating between different machine languages,
or of developing an order code that would be usable on more than one
machine.29 This tendency was perhaps reinforced by contemporary inter-
est in the machine translation of natural languages, an important field of
application of early digital computers that was generously funded by the
Department of Defense.30 In 1954, Margaret Harper, a programmer at

26. Stibitz, “The Organization of Large-Scale Computing Machinery,” 94 (empha-
sis added).

27. ACM, Committee on Nomenclature, First Glossary of Programming Termin-
ology, 17. Translate was further defined as “to change information (e.g. problem state-
ments in pseudo-code, data, or coding) from one language to another without signifi-
cantly affecting the meaning” (24). We thank Helena Durnová for showing us this
source.

28. Notably in the IBM Corporation’s report Specifications for the IBM Mathemati-
cal FORmula TRANslating System FORTRAN.

29. An informal discussion on “a ‘universal’ code which could be correctly inter-
preted not only by programmers but also by various different computers” took place at
a conference in December 1951, but concrete steps toward such a code only took place
some years later, as described in subsequent sections. See Joint AIEE-IRE Computer
Conference, Review of Electronic Digital Computers, 113–14.

30. See Hutchins, Machine Translation; and Martin-Nielsen, “Private Knowledge,
Public Tensions.” The development of multilingual machine translation systems was
also a main concern for UNESCO at that time, as part of its efforts to preserve the free
circulation of scientific knowledge. Machine translation efforts failed in the 1960s, but
from this failure came a profound realization about computer understanding of natural
languages, informing later research in search engines like Google. We thank one of the
reviewers for this insightful remark. On UNESCO’s efforts, see, for example, “Working
Group to Discuss the Possible Assistance of UNESCO in the Field of Mechanical Trans-

04_Nofre_2nd 40–75.qxp_03_49.3dobraszczyk 568– 2/12/14 1:04 PM Page 47

T E C H N O L O G Y A N D C U L T U R E

JANUARY

2014

VOL. 55

48

lation,” 16 October 1961, available at http://unesdoc.unesco.org/images/0015/001538/
153820eb.pdf (accessed 1 November 2012).

31. Margaret H. Harper, “Subroutines.”
32. Allen Newell, “Notes,” 26 September 1955, and “RAND, Chess Learning

Machine Notes,” January–September 1955, in Allen Newell Collection, Carnegie Mellon
University, Pittsburgh, available at http://doi.library.cmu.edu/10.1184/pmc/newell/box
00002/fld00108/bdl0001/doc0003 (accessed 15 November 2013).

Remington Rand, asked: “If Russian can be translated into English . . . why
not one computer code into another?”31 And a year later, in an internal
RAND Corporation document, Allen Newell suggested that through the
study of machine translation “[w]e might be a lot closer to ‘real’ automatic
programming of computers.”32

However, the majority of machines in operation served local commu-

FIG. 1 The first of a series of four robot-like illustrations used by Grace Hopper
to explain the A2 compiler for use on the UNIVAC computer during a summer
course at the MIT in 1954. (Source: C. W. Adams, ed., Digital Computers:
Advanced Coding Techniques—Notes from a Special Summer Program
[Cambridge, MA: MIT Press: 1954]. Image reproduced by permission of MIT,
and courtesy of the Computer History Museum.)

04_Nofre_2nd 40–75.qxp_03_49.3dobraszczyk 568– 2/12/14 1:04 PM Page 48

NOFRE, PRIESTLEY, and ALBERTSK|KWhen Technology Became Language

49

33. Herman H. Goldstine and John von Neumann, Planning and Coding of Prob-
lems for an Electronic Computing Instrument; Maurice V. Wilkes, David J. Wheeler, and
Stanley Gill, The Preparation of Programs for an Electronic Digital Computer, where in
the preface the authors comment that “[t]he methods are described in terms of the code
of orders used in the EDSAC, but for the main part they may readily be translated into
other order codes.”

34. See, for example, the surveys presented by J. H. Brown and John W. Carr III,
“Automatic Programming and Its Development on the MIDAC”; and C. W. Adams,
“Developments in Programming Research.”

nities of scientists and engineers who wanted quick answers to specific cal-
culations, and among these groups of users, there was little practical
demand for programs that could run on different machines. Indeed, up
until the mid-1950s, coding practices and notations remained highly local-
ized, depending on tools and techniques developed for individual ma-
chines. This was the case even for machines with overall design similarities,
such as those based on the computer developed by von Neumann’s team at
the Institute for Advanced Study in Princeton. As machines came into
operation and coding became a daily concern, local knowledge and cus-
toms, ranging from manual routines to special input and output devices,
tended to prevail.

Nevertheless, at several computer installations, these loose groups of
users made attempts to share knowledge that transcended local practices.
Military funding supported, either directly or indirectly, the majority of
computing projects at the time and promoted a relatively open circulation
of knowledge, imposing few security restrictions and sponsoring public
symposia and the publication of proceedings and newsletters. In addition,
a few influential publications describing more general approaches to the
programming process circulated widely. In a series of reports published in
1947 and 1948, Herman Goldstine and von Neumann presented a detailed
methodology for the design of programs, aiming to give the activity of cod-
ing the systematic foundations that would apply across all machine types,
and Maurice Wilkes and his collaborators at the University of Cambridge
Mathematical Laboratory later published a book that mixed accounts of
concrete, local programming practices with the more abstract ideas dis-
cussed by von Neumann’s group.33

In the early 1950s, the emerging field of automatic coding became a
locus of shared knowledge about coding and programming techniques.
The term automatic coding (later also referred to as autocoding or auto-
matic programming) was variously defined, but was usually taken to refer
to the use of the computer itself to take over routine, mechanizable aspects
of the programming process, such as the conversion between binary and
decimal representations of numbers, the assembly of subroutines taken
from a library into complete programs, or the translation of various forms
of pseudo-code into machine code.34 Teams of programmers from many
computer facilities developed programs to perform these tasks, such as

04_Nofre_2nd 40–75.qxp_03_49.3dobraszczyk 568– 2/12/14 1:04 PM Page 49

T E C H N O L O G Y A N D C U L T U R E

JANUARY

2014

VOL. 55

50

35. This was the case even with the different sites taking delivery of the same com-
puter—for example, the IBM 701, the first production computer; see Cuthbert C. Hurd,
ed., “Special Issue on the IBM 701.”

36. In fact, the first concrete realization of this idea came in 1949, with John Mauch-
ly’s “short code” for the UNIVAC. Mauchly’s proposal required the user to transliterate
mathematical symbols into numeric codes, however. See Remington Rand Inc., “Pref-
ace”; and J. Halcombe Laning and Neal Zierler, A Program for Translation of Mathemat-
ical Equations for Whirlwind I.

37. IBM Corporation, Specifications for the IBM Mathematical FORmula TRANs-
lating System FORTRAN.

38. The estimates of the total number of computers and their variety are from
William Aspray, “International Diffusion of Computer Technology, 1945–1955,” 351–
52. In Western Europe, by 1955, there were twenty-seven computers installed, fifteen of

compilers and interpreters, which led to much redundancy and duplica-
tion of effort and made clear to the heads of these facilities the need to
share information and knowledge.35

Automatic coding techniques were, however, highly machine-specific.
This was the case even for the most sophisticated of these, the so-called for-
mula translation systems. Based on the observation that some algebraic
expressions encode computational procedures, formula translation sys-
tems used the computer itself to translate algebraic formulas into equiva-
lent machine code. At MIT, J. Halcombe Laning and Neal Zierler devel-
oped the first of these systems for the Whirlwind computer.36 Their system
came to the attention of John Backus, a programmer at IBM who was
undertaking the development of an automatic coding system for the forth-
coming IBM 704. This new project, known as FORTRAN (for FORmula
TRANslation), shared with Laning and Zierler’s system the fundamental
goal of allowing mathematical notation, in particular algebraic formulas, to
be included directly in the programs used by computers.37

Formula translation systems thus held out the promise of allowing the
universal language of mathematics to be used directly on computers, but
that promise was initially only realized for specific machines, whether
MIT’s Whirlwind or the IBM 704. Before long, however, new events, such
as the appearance of multi-machine installations and the advent of the
commercial computer, brought about changes in the orientation of pro-
gramming toward single machines.

New Threats, New Opportunities: The “Commercial Capture
of the Computer”

At the beginning of the 1950s, there were a dozen computers in the
United States and a handful in the United Kingdom, all of them one-of-a-
kind research machines. By 1955, however, there were roughly 200 opera-
tional machines worldwide, still mostly in the United States, representing
over a hundred different types of machines.38 One factor in this spectacu-

04_Nofre_2nd 40–75.qxp_03_49.3dobraszczyk 568– 2/12/14 1:04 PM Page 50

NOFRE, PRIESTLEY, and ALBERTSK|KWhen Technology Became Language

51

them in the UK. See W. K. Bruijn and Stichting Studiecentrum voor Administratieve
Automatisering, Computers in Europe 1966, table 1; and Martin H. Weik, A Survey of
Domestic Electronic Digital Computing Systems.

39. Ceruzzi, A History of Modern Computing, chap. 2.
40. From the early 1950s, the increasing replacement of manned aircraft for mis-

siles, as part of a new U.S. military strategy, brought the computing facilities of firms like
Douglas and Lockheed under remarkable pressure, since missile design and manufac-
turing demanded much greater computing accuracy. See Allen J. Scott, “The Aerospace-
Electronics Industrial Complex of Southern California”; and G. R. Simonson, “Missiles
and Creative Destruction in the American Aircraft Industry, 1956–1961.” For an eye-
witness account, see Fred J. Gruenberger, “A Short History of Digital Computing in
Southern California.”

41. Besides, manpower shortages made it difficult to find and retain the best pro-
gramming personnel and to keep salaries under control; see Ensmenger, The Computer
Boys Take Over, chap. 3.

42. In part, this move reflected IBM’s fear that programming costs would rise to the
point whereby companies would have difficulties in justifying the total cost of comput-
ing. For an insider’s view, see R. Blair Smith, “The IBM 701.”

lar growth was the appearance of the first production-line machines, such
as the UNIVAC and the IBM 701. By the end of 1954, Remington Rand
had delivered sixteen UNIVACs, and eighteen 701s had been manufac-
tured and delivered, predominantly to U.S. military and defense contrac-
tors, with the balance going to government agencies, insurance companies,
and universities.39 Together, these first commercial machines represented
a growth in just a single year of over 20 percent of the total number of
operational computers in the country.

This increasing diversity of computers meant that computer users had
to adapt to a situation where the use of multiple types of computer was the
norm. Some installations soon acquired a range of different machines,
whereas others found it desirable to purchase new and more powerful
machines as the technology evolved. This situation soon revealed limita-
tions in existing programming techniques, which, as discussed above, were
largely machine-specific, meaning that programs coded for machines of
one type could not be used on those of another.

This remarkable expansion came at a time of increased work pressure,
since many customer installations were involved in defense production
work.40 The lack of machine compatibility could therefore have serious eco-
nomic consequences; for example, it would significantly raise the costs asso-
ciated with the purchase of a new machine if all existing programs had to be
rewritten for it. A further problem was that the variety of codes used on these
machines meant that programming personnel had to be trained to work on
a range of different machines; but during a period of manpower shortages in
the computing field, this was a luxury few facilities could afford.41

Recognizing the urgency of the situation, IBM made extensive efforts
during the development of the 701 computer to involve prospective cus-
tomers in the development of programming expertise and infrastructure.42

04_Nofre_2nd 40–75.qxp_03_49.3dobraszczyk 568– 2/12/14 1:04 PM Page 51

T E C H N O L O G Y A N D C U L T U R E

JANUARY

2014

VOL. 55

52

43. Atushi Akera, Calculating a Natural World, 251–59.
44. See the papers on the different IBM 701 installations collected in Hurd, ed.,

“Special Issue on the IBM 701.”
45. U.S. Navy Mathematical Computing Advisory Panel, ed., Symposium on Auto-

matic Programming for Digital Computers, 13–14 May 1954.
46. Saul Gorn, “Planning Universal Semi-Automatic Coding”; Brown and Carr,

“Automatic Programming and Its Development on the MIDAC.” The possibility of a
universal code had been raised before—at an informal discussion at the Joint AIEE–IEE
Computer Conference in 1951 (Joint AIEE-IEE Computer Conference, Review of Elec-
tronic Digital Computers, 113–14), where Charles W. Adams of MIT “suggested the pos-
sibility of a ‘universal’ code which could be correctly interpreted not only by program-
mers but also by various different computers by means of interpretative subroutines.
Such a scheme could permit the same program to be used on different computers, albeit
at a loss of efficiency, and might aid in the adoption of a truly universal code for future
computers.” Little immediate progress toward this goal was made, however, but the
1954 meeting marks a significant quickening of interest in the topic.

47. Indeed, manpower shortages were a problem affecting many technical and sci-
entific fields in the United States at that time, especially those related to the defense
effort, such as physics, engineering, and linguistics. For the physics situation, see David
Kaiser, “Cold War Requisitions, Scientific Manpower, and the Production of American
Physicists after World War II.” For contemporary accounts, see Ruth W. Wolfe, “The
Technical Manpower Shortage”; Harry H. Ransom, “Scientific Manpower and National
Security”; U.S. Congress, Joint Committee on Atomic Energy, Engineering and Scientific
Manpower in the United States, Western Europe and Soviet Russia; Donald A. Quarles,

The strategy was to encourage cooperation among different customers,
and between customers and IBM. During 1952–54, IBM, with the RAND
Corporation acting as clearinghouse, promoted several projects of collab-
oration in programming techniques among computing installations in the
Los Angeles region.43 Even these efforts did not suffice to prevent signifi-
cant duplication of effort, such as the production of different assembly and
formula translation programs at various IBM 701 installations.44

The problems were discussed by a number of specialists in computer
programming in May 1954, during a symposium on automatic coding
techniques organized by the Office of Naval Research.45 In particular,
mathematicians Saul Gorn of the U.S. Army’s Ballistics Research Labora-
tory at the Aberdeen Proving Ground in Maryland and John Weber Carr
and his colleague J. H. Brown of the Willow Run Research Center at the
University of Michigan presented their research and experiments on the
possibility of a “universal code” or “universal computer language.”46

Working independently of each other, Gorn and Carr were confronted
with similar problems, having to produce large quantities of day-to-day
computational work to strict deadlines, while at the same time looking
after the training of programming personnel. Certainly, these problems
were not unique to Gorn’s and Carr’s respective computing facilities—
quite the opposite. As Nathan Ensmenger has shown, manpower shortages
of programming personnel were among the most critical problems in the
computing field during the mid-1950s.47 What made Gorn’s and Carr’s sit-

04_Nofre_2nd 40–75.qxp_03_49.3dobraszczyk 568– 2/12/14 1:04 PM Page 52

NOFRE, PRIESTLEY, and ALBERTSK|KWhen Technology Became Language

53

“Need of Scientific Manpower”; American Mathematical Society and National Research
Council, Proceedings of a Conference on Training in Applied Mathematics; Robert G.
Gibbs, “Manpower Supply Down, Military and Industrial Demand High”; and T. H.
Rogers, “Supply and Demand of Technical Personnel in American Industry.”

48. Gorn, “Planning Universal Semi-Automatic Coding” and “Standardized Pro-
gramming Methods and Universal Coding.”

49. On John W. Carr III and the computing facility at Willow Run Research Center,
see Akera, Calculating a Natural World, 295–98, and “The Life and Work of Bernard A.
Galler (1928–2006),” 4.

50. Brown and Carr, “Automatic Programming and Its Development on the MID-
AC.”

51. John W. Carr III and Norman R. Scott, eds., Notes on Digital Computers and
Data Processors, xii.

uation more urgent is that, although working in different institutional cir-
cumstances, they were confronted by the problems caused by a variety of
machines and codes on an almost daily basis.

At the Aberdeen Proving Ground, where Gorn was the mathematics
advisor to the Computing Lab, the ENIAC, EDVAC, and ORDVAC com-
puters had been in simultaneous use since 1951.48 This situation prompted
him to consider the development of a code simple enough that anybody
could learn to use it in a short time, and that could be used to produce pro-
grams to run on any machine. Such a code, Gorn believed, would put an
end to universities’ reluctance to train graduates in programming tech-
niques, as universities often used the existing multiplicity of codes as an
excuse not to engage in the training of programming personnel. Gorn’s
code would allow programmers to describe, in a machine-independent
way, the construction of programs out of an agreed set of basic subrou-
tines, and it formed part of a more general and systematic approach to pro-
gramming that made extensive use of flowcharts. The system was never
fully implemented, however, although Gorn was able to produce simple
subroutines that were automatically translated by the EDVAC and ORD-
VAC computers into their own code.

Carr was thinking along similar lines. He was in charge of the MIDAC
computer at the Willow Run Research Center, the University of Michi-
gan’s off-site military-research facility. Carr’s team had to produce high-
precision computational work for the U.S. Air Force’s BOMARC guided-
missile program, in addition to work for the university’s departments and
other governmental agencies, as well as for industry.49 Achieving high ac-
curacy was a complex, error-prone, time-consuming programming task,
so Carr’s prime concern was the development of a mistake-free coding
process based on easy-to-correct and easy-to-use input languages and the
elimination of as much human intervention as possible.50 Furthermore, the
MIDAC, initially designed exclusively for military use, had been open to
Michigan’s faculty and students since 1953, becoming a “laboratory tool”
to fill the gap caused by a lack of general training on programming.51 In

04_Nofre_2nd 40–75.qxp_03_49.3dobraszczyk 568– 2/12/14 1:04 PM Page 53

T E C H N O L O G Y A N D C U L T U R E

JANUARY

2014

VOL. 55

54

52. Brown and Carr, “Automatic Programming and Its Development on the MID-
AC,” 89.

53. John W. Carr III, “Conference Summary,” 147.
54. Brown and Carr, “Automatic Programming and Its Development on the MID-

AC,” 89–90.
55. Ibid.
56. Derrick H. Lehmer, “Welcoming Address.” On Lehmer’s early programming

work, see Maarten Bullynck and Liesbeth de Mol, “Setting-up Early Computer Pro-
grams.”

57. Lehmer, “Welcoming Address,” 8. Indeed, in his speech, Lehmer publicly com-
plained that some signs of this risk had loomed during the preparations of the confer-
ence when the program committee decided not to publish transcripts of the discussions
following the requests of representatives of private firms.

this context, Carr soon realized the advantage of a standard input code.
And although, like Gorn, he did not go much further than the develop-
ment of common automatic coding techniques, he understood very well
the benefits of black-boxing the machine: “The progress . . . leads, of neces-
sity, towards some sort of standardization of the basic input language of all
computers as it looks to the users, before it is fed through the ‘black box’
which contains the integrated system which matches the internal language
to the external human language.”52

It was not just about improving human–machine communication;
there was also a political side to Carr’s views on universality. An ardent de-
fender of the role of universities in computing, he feared that the increas-
ing hegemony of industry in the computer field would endanger the al-
ready weak position of the universities.53 If carried out, such “commercial
capture of the computer,” as he put it, would leave universities with little
control over the new technology.54 Instead, Carr speculated, the existence
of a “common, universal, external language arrived at by mutual agree-
ment and persuasion” would free the user from the manufacturer’s ma-
chine specifications.55

Carr was not alone in raising his voice against the role of industry in the
computer field. In February 1954, mathematician Derrick Lehmer of the
University of California, Berkeley, who in 1946 had been an early user of
ENIAC, expressed similar concerns during his welcoming address to the
participants of the second Western Computer Conference in Los Angeles.56
A member of the computer “old guard,” as he introduced himself, Lehmer
warned newcomers to the field of the danger that “corporate security”
would pose to the free flow of information. Aware of the shift of patronage
that was taking place, he feared that industry, about to replace the U.S. gov-
ernment as the driving force in the computer field, would put an end to the
“enlightened policy” on the circulation of information implemented by the
U.S. government during the previous decade.57 As Lehmer reminded his
audience, government funds had not only supported the creation of com-
puters, they had also sponsored symposia and the publication of proceed-

04_Nofre_2nd 40–75.qxp_03_49.3dobraszczyk 568– 2/12/14 1:04 PM Page 54

NOFRE, PRIESTLEY, and ALBERTSK|KWhen Technology Became Language

55

58. John W. Carr III, Computing Programming and Artificial Intelligence, 2.
59. John W. Carr III, “Methods in High-Speed Computation,” 23.
60. Herbert S. Bright, “Computer User Groups.”

ings, and encouraged the dissemination of results, as in the case of the
Western Computer Conference itself.

As will be shown in the next two sections, the idea of a universal lan-
guage was to be a decisive step in the emergence of programming lan-
guages as distinct objects of knowledge, and eventually of a science of pro-
gramming. Carr’s and Lehmer’s warnings may be viewed as boundary
work at two levels: first, defending the place of universities within the new
commercially oriented computing field; and second, looking for an object
of study around which to build a scientific discipline. Indeed, in the sum-
mer of 1958, Carr explicitly connected the problem of operating multi-
machine installations to the opportunity to turn the research area of auto-
matic programming into a scientific discipline:

If humans are to keep up with the voracious input capacity of the
digital computers, then languages built for the humans, and not the
machines, must be developed and put into operation. This involves
the creation of translators, techniques for using them, and, finally,
a theory of such formal translators. Multi-machine installations,
with each machine having a separate language of its own, require
a unified language for most efficient use. The development of “auto-
matic problem solution” requires formalism, interchangeability of
procedures, and computability of languages if it is to become a true
discipline in the scientific sense.58

Carr’s vision, extending into the regions of metalinguistics, derived from
his conviction that computer languages were indeed “languages,” with
their own “simple equivalents of verbs and nouns, tenses and moods.”59

Despite Lehmer’s and Carr’s fears, however, the commercial computer
was soon to provide computing facilities with the opportunity to increase
collaboration on programming. This was largely due to the emergence of
user groups—organizations formed by customer firms with the same type
of machine that sought to establish working standards to exchange code
and co-develop some basic programs, such as assembly and utility subrou-
tines that could be used by all installations.60 These groups facilitated the
transformation of programming into an activity disconnected from the
machine, and it was in this context that the idea of common, or universal,
languages really caught fire.

04_Nofre_2nd 40–75.qxp_03_49.3dobraszczyk 568– 2/12/14 1:04 PM Page 55

T E C H N O L O G Y A N D C U L T U R E

JANUARY

2014

VOL. 55

56

61. Atsushi Akera, “Voluntarism and the Fruits of Collaboration.”
62. Bright, “Computer User Groups,” tables 1–2a, b.
63. Remington Rand Inc., “Formation of USE,” 264.
64. Ibid., 265.
65. William F. Luebbert and Percy W. Collom Jr., “Signal Corps Research and

Development on Automatic Programming of Digital Computers.” Fieldata Project
materials can be found in the U.S. Government Computing Collection, Charles Babbage
Institute, University of Minnesota, Minneapolis (hereafter CBI-UM).

Varieties of “Universality”

The first formal user group to be established was SHARE, formed in
September 1955 by facilities using the IBM 701 and expecting to receive
the new IBM 704.61 Three months later, USE (Univac Scientific Exchange)
was established by prospective users of the Remington Rand 1103A com-
puter, including representatives of the computing facilities of Boeing,
Holloman Air Force Base, Lockheed Missile Systems Division, Ramo-
Wooldridge, and Remington Rand UNIVAC Division. During the follow-
ing years, inspired by the example of SHARE and USE, many other user
groups flourished, with about twenty groups established by 1960.62

One of the aims of user groups was to enable the exchange of programs
between installations, and to do this, some degree of the standardization of
programming tools was clearly required. In the case of USE, this require-
ment was expressed in terms of language: in December 1955, the first
meeting of USE agreed on the adoption of a “common programming lan-
guage for exchanged programs” as one of the top priorities of the newly
established cooperative organization.63 Conceived as a sort of supra-lan-
guage to facilitate the exchange of library programs, USE’s common lan-
guage was to include all the languages of specific installations, but without
forcing any member to use the common language internally.64 USE’s grand
project did not go any further than the development of a standard compil-
ing routine and some other basic programming tools. Nevertheless, it is
worth noting that this early use of the term programming language ap-
peared in conjunction with the adjective common, as if the newly coined
phrase sought to convey a sense of detachment from the specific machine.

In the following years, two projects from the user groups and the U.S.
military would attempt to broaden the scope of the USE initiative and to
achieve a degree of machine independence by developing “universal,”
“common,” or “single” languages that would be usable across computers of
different types. The first and less-well-known project was part of the Fiel-
data Project of the U.S. Army Signal Corps (1956–62), an ultimately un-
successful though highly ambitious programming effort to develop a “uni-
versal computer code,” in a similar fashion to SHARE’s UNCOL project
described below, and aimed to facilitate the portability of computer pro-
grams.65 The second project was the creation of a data-processing lan-
guage, soon named COBOL (for Common Business-Oriented Language),

04_Nofre_2nd 40–75.qxp_03_49.3dobraszczyk 568– 2/12/14 1:04 PM Page 56

NOFRE, PRIESTLEY, and ALBERTSK|KWhen Technology Became Language

57

66. J. A. N. Lee, ed., “Special issue, COBOL: 25th Anniversary”; and Jean E. Sammet,
“The Early History of COBOL.”

67. The IT language was first described in J. Chipps et al., “A Mathematical Lan-guage
Compiler”; and Alan J. Perlis and J. W. Smith, “A Mathematical Language Compiler.”

68. Alan J. Perlis, “Two Thousand Words and Two Thousand Ideas.” In 1957, IT
was released as a library program for the IBM 650, at which point it became known as
Internal Translator (IT).

69. FORTRAN was implemented for the IBM 650 and 709 computers in 1958; see J.
A. N. Lee, “Pioneer Day, 1982,” 10–11. By mid-1958, IT was available on the Burroughs
205 (Datatron) computer. For IT, see Sylvia Orgel, Purdue Compiler General Description.

70. IBM Corporation, Reference Manual FOR TRANSIT Automatic Coding System.
See also David Hemmes, “FORTRANSIT Recollections.”

71. Robert W. Bemer, “The Status of Automatic Programming for Scientific Prob-
lems,” 115.

sponsored and supported by the Department of Defense to reduce the
costs associated with the maintenance of a growing variety of computer
systems.66

Specialists in computer programming had taken the first steps toward
machine independence in the area of formula translation languages.
Starting in late 1955, a “mathematical language compiler” had been con-
ceived for the Datatron 205 computer at Purdue University.67 Alan Perlis,
a member of the group, then moved to Carnegie Mellon, where he further
implemented the language—by then known as IT—for the IBM 650.68

Similarly, by 1958, IBM was planning to make FORTRAN available on ma-
chines other than the IBM 704.69 Inspired by Perlis’s IT, IBM developed
the FOR TRANSIT system to enable a limited version of FORTRAN to be
translated into IT, thus making it available on the 650.70 This greatly in-
creased the reach of FORTRAN, hitherto available only on IBM’s expen-
sive high-end scientific machines.

These experiments highlighted the promise of the idea of a machine-
independent language, but also its limitations: the two versions of IT dif-
fered in certain ways, and it proved difficult to implement a full version of
FORTRAN for the 650 because of the machine’s limited capabilities. How-
ever, it began to seem plausible that a form of universality could be
achieved by means of translation among languages. As Robert Bemer of
IBM put it later in the year, “[a]lthough the ultimate in language does not
exist yet, we can console ourselves meanwhile with compatible (as against
common) language. There is much current evidence that existing algebraic
languages are all mappable into one another by pre-processors.”71

Institutional interest in the possibility of common languages came ini-
tially from the user groups. By this point, user groups had clearly under-
stood that their cooperative efforts were limited to each group’s scope; at
the same time, however, many member facilities were already operating
several types of computers. The problem of information exchange had thus
become an in-house issue. So user groups were open to exploring the pos-
sibility of a national organization that would transcend the existing user

04_Nofre_2nd 40–75.qxp_03_49.3dobraszczyk 568– 2/12/14 1:04 PM Page 57

T E C H N O L O G Y A N D C U L T U R E

JANUARY

2014

VOL. 55

58

72. Letter, Walter F. Bauer to Paul Armer, 12 April 1957, 2, series 3, box 7, folder
“SHARE Correspondence 1957,” Paul Armer Collection, in Archives Center, National
Museum of American History, Smithsonian Institution, Washington, D.C. (hereafter
AC-NMAH).

73. “Recapitulation of the May, 1957, Los Angeles Meetings on Information Ex-
change,” 1, Universal Language Committee, UNCOL, 8 April 1958, appendix A, box 1,
folder 13, SHARE, Inc. Records, in CBI-UM.

74. See ibid.; the attendees were: Paul Armer (RAND/SHARE), Walter F. Bauer
(Ramo-Wooldridge/ACM), John W. Carr III (University of Michigan/president of the
ACM), Frank Engel (Westinghouse/SHARE chairman), Donald W. Gantner (Ramo-
Wooldridge/USE), Edward M. McCormick (U.S. Naval Ordnance Labs/DUO chair-
man), Robert P. Rich (Johns Hopkins University/USE chairman), and Richard B. Tal-
madge (Lockheed Aircraft/USE ex-chairman). Unable to attend were Alan J. Perlis
(Carnegie Institute of Technology), Jack Strong (North American Aviation), Randall
Porter (Boeing), and Walter Ramshaw (United Aircraft).

75. See ibid., 3.
76. Paul Armer et al., “Los Angeles, May 10, 1957,” Universal Language Committee,

UNCOL, SHARE, Inc. Records, in CBI-UM. Perlis’s IT was explicitly mentioned in the
letter of invitation of Bauer to Armer, Paul Armer Collection, in AC-NMAH. Perlis
himself, unable to attend the meeting, endorsed the final resolution.

groups and include all users of computers, whoever their manufacturer.
More important, they were also ready to discuss whether plans should be
made for a “truly universal programming language.”72

Following an initial call from Frank Engel (Westinghouse/SHARE)
and Walter Bauer (Ramo-Wooldridge/ACM), the Los Angeles Meeting on
Information Exchange assembled representatives of the user groups
SHARE, USE, and DUO (Datatron User’s Organization), under informal
mediation of the ACM, at Ramo-Wooldridge in Los Angeles during 9–10
May 1957 to examine the “ways and means of facilitating the exchange of
all types of computing information.”73 This meeting brought together the
heads of eight computing installations from major defense contractors,
universities, and the federal government, who also attended as representa-
tives of the user groups and the ACM.74

During the first day, it soon became clear that the idea of a super-orga-
nization would have little endorsement. Although the ACM appeared to be
the foremost candidate for such a role, given its independence from indus-
try and its programming-oriented character, the lack of funds and drive of
the organization were considered major shortcomings by the user groups.
The groups’ representatives at Los Angeles were, however, more positive
about the idea of a “single universal computer language.”75 This idea was
based on evidence, such as the work on FORTRAN and IT described
above, that programming techniques were about to transcend the charac-
teristics of particular machines to produce “programs which are machine
independent.”76 Still, the participants conceded, such objectives would
probably evolve from several initial “universal” languages. The meeting
ended with the formulation of a general recommendation to the ACM to
“appoint a committee to study and recommend action toward a universal

04_Nofre_2nd 40–75.qxp_03_49.3dobraszczyk 568– 2/12/14 1:04 PM Page 58

NOFRE, PRIESTLEY, and ALBERTSK|KWhen Technology Became Language

59

77. Armer et al., “Los Angeles, May 10, 1957,” SHARE, Inc. Records, in CBI-UM.
78. See “Recapitulation of the May, 1957, Los Angeles Meetings on Information Ex-

change,” 2, SHARE, Inc. Records, in CBI-UM.
79. In the fall of 1957, mathematician Franz L. Alt of the National Bureau of Stan-

dards, together with Carr, Bauer, and Perlis, among others, would give the main impetus
to the establishment of the Communications of the ACM; see Walter F. Bauer, Mario L.
Juncosa, and Alan J. Perlis, “ACM Publication Policies and Plans,” 121–22.

80. For more details on these events, see David Nofre, “Unraveling Algol,” 62–64.
81. Initially (November–December 1954), the project included the following West

Coast computing installations: Douglas Aircraft (El Segundo and Santa Monica), IBM,
North American Aviation, Ramo-Wooldridge, and RAND Corporation; see “PACT
Notes,” 1 December 1954, box 22, folder 7, John Clifford Shaw Papers, in AC-NMAH.

82. T. B. Steel Jr., chairman, UNCOL Committee, to SHARE, “Committee Report,”
17 March 1961, 2, box 1, folder 32, Francis V. Wagner Papers, in CBI-UM.

programming language,” plus three other actions to facilitate the rapid ex-
change of practical information on programming.77

The Los Angeles meeting was to have further significant consequences
for the future development of computer programming. One of its first
results was the establishment by the ACM of the monthly journal Commu-
nications of the ACM. At the meeting, Carr, who attended as the president
of ACM, had suggested the possibility of a “problem solver’s journal”
edited by the ACM as a tool for the rapid dissemination of information,
with a special stress on programming techniques.78 Under the editorial
leadership of Perlis, the first issue appeared in January 1958, subsequently
becoming a worldwide reference source for the publication of research on
programming.79 The second result was that the meeting would eventually
lead to the establishment, in January 1958, of an ACM Ad Hoc Committee
on Languages. As described below, this committee, in collaboration with a
group of heads of computing centers in Europe, was to draw up the first
definition of the programming language ALGOL—an ambitious attempt
to create a universal language for scientific computation.80

The Los Angeles meeting also turned out to be a catalyst for an alter-
native approach to the question of universality about to gather momentum
within SHARE. In the spring of 1957, the so-called Project for the Ad-
vancement of Coding Techniques (PACT) came to an end. A forerunner
of SHARE, PACT had started in November 1954 as a joint venture of sev-
eral defense contractors on the West Coast to cooperate with IBM in the
development of a more elaborated coding system for the 701 and 704 com-
puters than IBM’s FORTRAN.81 However, the project suffered many
delays and never received much use; the second version, conceived for the
704, remained unfinished. As an alternative course of action, the final re-
port of the PACT II Working Committee, released in the spring of 1957,
recommended the “design of a universal, intermediate language, inde-
pendent of specific hardware but similar in character to machine lan-
guages.” The UNCOL project was born.82

In the winter of 1957, SHARE established an Ad Hoc Committee on

04_Nofre_2nd 40–75.qxp_03_49.3dobraszczyk 568– 2/12/14 1:04 PM Page 59

T E C H N O L O G Y A N D C U L T U R E

JANUARY

2014

VOL. 55

60

Universal Languages to further develop the original recommendations of
PACT II’s final report. The ACM’s new journal published this committee’s
report in the summer of 1958.83 The committee distinguished between
“problem-oriented languages” (POLs), such as FORTRAN and IT and
equivalent languages for tasks like data processing, and machine languages
(MLs).84 Its conclusions were based on a particular view about universal-
ity—namely, that “[i]t is impossible to agree on one universal POL.”85 Be-
cause of the ever-increasing range of tasks that computers were being used
to solve, SHARE’s Ad Hoc Committee on Universal Languages felt that a
universal problem-oriented language would either be inadequate for some
areas or else unwieldy and unusable. But in the absence of a universal lan-
guage, a compiler would have to be written for every required combination
of problem-oriented language and machine.

To avoid this, the committee introduced an intermediate linguistic level
between the problem-oriented languages and the machines, consisting of a
single Universal Computer Oriented Language (UNCOL). It was planned
that UNCOL would be a machine-like language that abstracted from the
idiosyncrasies of specific machines; the idea was to produce an UNCOL-to-
machine-language translator for each given machine, along with generators
to translate each required problem-oriented language into UNCOL. The
SHARE committee argued that this would be more economically feasible
than writing a compiler for each problem-oriented language86 (fig. 2).

In rejecting the idea of a universal problem-oriented language and
locating the idea of universality closer to the machine, the UNCOL project
separated the exchange of computer code, expected to be carried out at the
intermediate level, from the exchange of programming ideas and tech-
niques as embodied in human-readable, problem-oriented languages. Yet,
it turned out to be much harder than expected to create a computer-ori-
ented language that was independent of the wide range of contemporary
machine architectures. By 1961, after three years of intense work, SHARE’s
UNCOL committee, a descendant of the original committee, had only
been able to put together a first version of a proposal; one year later, the
project ceased to exist.87

83. J. Strong et al., “The Problem of Programming Communication with Changing
Machines.”

84. In the UNCOL project, the term problem-oriented language referred to a “lan-
guage most natural to [an individual’s] way of thinking about the problem” (ibid., 12).
In the early 1960s, this term was sometimes regarded as interchangeable with procedure-
oriented language, but the latter phrase gradually acquired the distinct meaning of a lan-
guage “in which the user specifies a set of executable operations which are to be per-
formed in sequence”; see Jean E. Sammet, Programming Languages, 19.

85. Strong et al., “The Problem of Programming Communication with Changing
Machines,” 13.

86. For the economic argument, see T. B. Steel, “UNCOL.”
87. The idea of a universal intermediate language has been revived on different occa-

04_Nofre_2nd 40–75.qxp_03_49.3dobraszczyk 568– 2/12/14 1:04 PM Page 60

NOFRE, PRIESTLEY, and ALBERTSK|KWhen Technology Became Language

61

sions, most recently by the programming language Java and its virtual machine. We
thank one of the anonymous reviewers for this observation.

88. “Panel Discussion on Universal Language,” 8, Proceedings of the 10th Meeting of
SHARE, 26–28 February 1958, Washington, D.C., box 3, folder 16, appendix E, SHARE,
Inc. Records, in CBI-UM.

In today’s technical understanding, it may seem that problem-oriented
languages—in effect, high-level programming languages—were, in fact,
the solution to the portability problem; however, the overall situation at
this time was rather confusing. The understanding of programming as a
process of human–machine communication was starting to falter, and the
notion of language was proving to be fruitful in the development of a
machine-independent approach to computer programming. But the move
to a machine-independent notion of language was not immediate: pro-
gramming languages were still thought of as parts of programming systems
tied to specific machines. Not surprisingly, some felt that the “definition of
language was like the proverbial bucket of worms.”88 It was in connection
with the ALGOL project that the contours of a broader notion of language
emerged.

FIG. 2 A schematic showing the UNCOL three-level hierarchy of language, 28
February 1958. (Source: Appendix B of the report “Recapitulation of the May,
1957, Los Angeles Meeting on Information Exchange,” Francis V. Wagner
papers (CBI 6), box 1, folder 28. Image reproduced courtesy of the Charles
Babbage Institute, University of Minnesota, Minneapolis.)

04_Nofre_2nd 40–75.qxp_03_49.3dobraszczyk 568– 2/12/14 1:04 PM Page 61

T E C H N O L O G Y A N D C U L T U R E

JANUARY

2014

VOL. 55

62

89. On the details of these contacts, see Nofre, “Unraveling Algol,” 63. The quote is
from the English translation of the official letter of invitation: Heinz Rutishauser et al.
to John W. Carr III, president of ACM, 19 October 1957, enclosed in the memorandum
from Carr to the officers and council of the ACM, 13 December 1957, which is part of
Universal Language Committee, UNCOL, SHARE, Inc. Records, in CBI-UM.

90. “News and Notices,” 14. The membership of the committee was: J. W. Backus
(IBM), P. H. Desilets (Remington Rand), D. C. Evans (Bendix Aviation), R. Goodman
(Westinghouse), H. Huskey (UC, Santa Cruz), C. Katz (Remington Rand), J. McCarthy
(MIT), A. Orden (Burroughs), A. J. Perlis (Carnegie Institute of Technology), R. Rich
(Johns Hopkins University), S. Rosen (Burroughs), W. Turanski (Remington Rand), and
J. Wegstein (National Bureau of Standards). See “Proposal for a Programming Language”
(n.d. [ca.May 1958]), Unprocessed Computer Documentation Collection, in AC-NMAH.

91. Memorandum, J. Backus to the ACM Ad Hoc Committee on Languages, 12
February 1958, box 264, Charles Katz Papers, in AC-NMAH.

Universality Goes Worldwide

The establishment of the ACM Ad Hoc Committee on Languages was
a result of the Los Angeles meeting between user groups and the ACM in
the spring of 1957. But during the following months, the discussions be-
tween the user groups did not bring about any concrete results. Mean-
while, representatives of a West German–Swiss alliance of academic com-
puting installations, working on a common formula-translation project
under the sponsorship of the German Society for Applied Mathematics
and Mechanics (GAMM), contacted Carr, the president of the ACM, to
propose a joint conference to establish a “common formula language.”89

The European initiative came at the right time for Carr and the ACM, both
then struggling in their negotiations with the user groups. But it came at a
price, for it added an international dimension to the already wide range of
meanings of universality that were in play.

The ACM Committee on Languages first met during 24–25 January
1958 at the Carnegie Institute of Technology under the chairmanship of
Perlis to discuss how to proceed further in relation to the West German–
Swiss proposal.90 Two weeks later, John Backus prepared a memorandum
based on what the committee had so far agreed on, which set forth the pur-
poses and basic properties of the “proposed programming language”:

A. To provide a uniform internationally accepted language in which
to publish procedures for the solution of a variety of “scientific”
problems, a language which is at once precise, concise and easily
understood by those familiar with the few simple rules needed for
its interpretation.
B. To provide a programming language which, on the one hand, is
sufficiently powerful and concise to compare favorably with the best
such languages known today and which, on the other hand, appears
feasible and likely to be adopted as the input language for a large
class of computers both in the United States and in Europe.91

04_Nofre_2nd 40–75.qxp_03_49.3dobraszczyk 568– 2/12/14 1:04 PM Page 62

NOFRE, PRIESTLEY, and ALBERTSK|KWhen Technology Became Language

63

92. As Robert Bemer expressed it in October 1957, “[t]he area of loop control and
recursive operations is still not well handled in existing mathematical notation, but
computers are forcing the development”; see Bemer, “The Status of Automatic Pro-
gramming for Scientific Problems,” 115.

93. Alan J. Perlis and Klaus Samelson, “Preliminary Report.” The report was also
published in the first issue of the journal of numerical analysis, Numerische Mathematik,
established with the collaboration of some of the members of the Western German–
Swiss group, such as Friederich L. Bauer and Heinz Rutishauser.

94. Ibid., 10.
95. Ibid., 9.
96. Ibid.

This distinction between language and programming languagemakes it clear
that the ACM committee considered that computer programs were not
merely devices to get a machine to do a particular computation, but that they
encapsulated potentially valuable knowledge that, as well as being shared on
a concrete level, was worthy of a more traditional form of scientific publica-
tion. But existing languages did not meet the purpose. For instance, formula
translation systems allowed some mathematical notation, in particular alge-
braic expressions, to be used in programs; yet, their control statements,
which defined the overall structure of the computation, were highly diverse
and machine-specific. If for no other reason, a new language was necessary
to provide a universally accepted notation for control. Therefore, the aim
was not simply to define a new programming language, but to provide new
standards in mathematical notation capable of describing the structure of
extended computations, as well as their individual steps.92

A few months later, a meeting between representatives of the ACM
committee and the West German–Swiss group took place in Zurich be-
tween 27 May and 2 June. Four members from each side attended the
meeting; the American delegation included both Backus and Perlis, prin-
cipal designers, respectively, of the FORTRAN and IT languages. What
emerged from this meeting was a new kind of language, dubbed an “algo-
rithmic language.” Rather than being a vehicle for coding computers, the
new International Algebraic Language (IAL), defined and published in the
form of a scientific article, was thought of primarily as a kind of scientific
notation, an extension of mathematical language.93 Echoing Backus’s ear-
lier memorandum, the report stated that “[t]he purpose of the algorithmic
language is to describe computational processes”;94 it was further stipu-
lated that the language should be “as close as possible to standard mathe-
matical notation,” and that “it should be possible to use it for the descrip-
tion of computing processes in publication.”95

The final objective stated that IAL should be “mechanically translatable
into machine programs.”96 However, the proposal was not written with the
properties of any one machine in mind, and certain areas of functionality,
such as the definition of methods for input and output, were omitted. This
was partly because these would be hard to specify in a universally applica-

04_Nofre_2nd 40–75.qxp_03_49.3dobraszczyk 568– 2/12/14 1:04 PM Page 63

T E C H N O L O G Y A N D C U L T U R E

JANUARY

2014

VOL. 55

64

97. The Datatron, for which IT was initially planned, could only accept input in the
form of decimal digits, and the language was defined using what was, in effect, a refer-
ence language; see Chipps et al., “A Mathematical Language Compiler.” In the IAL
report, however, the abstract notation rather than the hardware character set was, for
the first time, treated as fundamental.

98. Perlis and Samelson, “Preliminary Report.”
99. Peter Naur et al., “Report on the Algorithmic Language ALGOL 60.” For the use

of the term dialect, see, for example, Harry D. Huskey, “NELIAC—a Dialect of ALGOL.”

ble way; a more significant reason was that such details did not form part
of the “scientific” aims of the language—the definition of computational
processes. Besides, the existing state of computing hardware made the
translation of a universal language somewhat problematic, as computers
used widely varying input devices, often with very limited character sets.97
The committee therefore defined three distinct linguistic levels: the central
level was the so-called reference language, based on a stipulated character
set adopted for the purposes of defining the language.98 This could be
interpreted in a number of hardware representations to take into account
the peculiarities of individual machines, and could also be presented in one
or more publication languages. These would enable the use of a greater
range of mathematical notations, and also permit national and other vari-
ations, such as the symbol used for the decimal point. Although these dis-
tinctions seem trivial now, they marked a growing awareness that a lan-
guage could be thought of as not just a set of physical inscriptions, but
instead as an abstract structure whose properties could be formally defined
and studied.

IAL aimed at multiple levels of universality. Aspiring to be an interna-
tional and universal human language, analogous to that of mathematics, it
combined this goal with the apparently conflicting ambition to be usable
on a wide range of computing equipment by reifying the metaphor of
“computer code as language” into the definition of an abstract structure
that could be concretely manifested in as many different ways as necessary.

Shortly after the publication of the report, a number of groups began to
write translators for IAL, soon renamed ALGOL (for ALGOrithmic Lan-
guage). Ironically enough, different implementers made independent and
incompatible choices based on local perceptions and needs. As IAL/AL-
GOL, unlike earlier proposals like FORTRAN, was explicitly called, and
treated as, a language, its variants naturally came to be referred to as “dia-
lects.” At the same time, the report provided an immediate focus for debate
on the very idea of a programming language. Readers of the Communica-
tions of the ACM and the newly formed ALGOL Bulletin commented on and
criticized the detailed proposals, and more general discussions took place at
the International Conference on Information Processing, held in Paris un-
der the auspices of UNESCO, in June 1959. As a result of these discussions,
a second committee met in Paris in January 1960 to reconsider the language,
consequently defining a new language, called ALGOL 60.99

04_Nofre_2nd 40–75.qxp_03_49.3dobraszczyk 568– 2/12/14 1:04 PM Page 64

NOFRE, PRIESTLEY, and ALBERTSK|KWhen Technology Became Language

65

100. J. W. Backus, “The Syntax and Semantics of the Proposed International Alge-
braic Language of the Zurich ACM-GAMM Conference.” For a detailed discussion of
the influence of logic in ALGOL, see Mark Priestley, A Science of Operations, chap. 8.

101. The importance of the algorithm as a central concept for an emerging computer
science is well-described by Ensmenger, The Computer Boys Take Over, chap. 5; the im-
portance of ALGOL 60 to the institutional foundation of the discipline is in Priestley, A
Science of Operations, chap. 9. One immediate consequence was an upsurge of interest in
formal language theory and its application to compilation. As the UNCOL project had
noted, compilation was a significant reverse salient in programming language technol-
ogy, and the ALGOL 60 report inspired a great effort to remove this obstacle.

102. Dörries, ed., “Language as a Tool in the Sciences,” 4.

One of the most significant advances of this new proposal was that
ALGOL 60 was defined completely formally, using a notation presented by
Backus in 1959 involving a syntax and semantics in a manner reminiscent
of Rudolf Carnap’s model of a formal language.100 This made clear that
ALGOL 60 itself was a formal mathematical, linguistic object, not just a
messy adjunct to the technical business of getting a computer to run. As the
introduction of the metaphors of syntax and semantics reveals, Backus’s
proposal emerged from a growing engagement among the fields of com-
puting, formal logic, and linguistics. In this regard, the ALGOL 60 report
proved to be a major catalyst in the application of results and techniques
from these fields to the area of computer programming, establishing among
other things the study of algorithms and programming languages them-
selves as a central part of the emerging discipline of computer science.101

Conclusion

Matthias Dörries has convincingly argued that scientists consistently
push metaphors to the limit, exploring their potential both as a means of
thinking and as explanatory tools.102 This was also the case for the language
metaphor in computer programming. This article has outlined some key
aspects of the genealogy of the term programming language. We began by
noting that the use of automatic digital computers was, from the begin-
ning, understood as a communicative relationship between two autono-
mous entities rather than as a passive relationship of deployment. We
showed how this relationship manifested itself in specifically linguistic
terms with, at its heart, the notion of translation between human and ma-
chine languages.

This simple model began to break down as the number and variety of
computers grew, leading to calls for the creation of common languages that
could mediate the growing “confusion of tongues” and enable the eco-
nomic migration of computer code from machine to machine, both within
and among organizations. At the same time, a small community of com-
puter specialists in academic computer centers worked to establish a space
within which the free exchange of information and collaboration charac-

04_Nofre_2nd 40–75.qxp_03_49.3dobraszczyk 568– 2/12/14 1:04 PM Page 65

T E C H N O L O G Y A N D C U L T U R E

JANUARY

2014

VOL. 55

66

103. In connection with the first point, Bemer, then at IBM, commented in 1957
that computer manufacturers should provide not only the machine, but also, “with the
full co-operation of responsible users,” the means of using it—namely, the program-
ming languages; see Bemer, “The Status of Automatic Programming for Scientific
Problems,” 117.

104. Brent K. Jesiek, “Between Discipline and Profession,” 177.
105. On the notion of an “island of semantic stability,” see Pierre Laszlo, “Conven-

tionalities in Formula Writing,” 52.

teristic of a period of military funding could continue as computer devel-
opment increasingly became the preserve of large commercial companies,
notably IBM. As a result, two prominent senses of the notion of universal-
ity emerged: first, the idea of machine independence so that research and
development in programming would not be constrained by the demands
of particular manufacturers; and second, a sense connecting directly with
the universality of the notations of science—and in particular, mathemati-
cal notation.103

The notion of a programming language, which is connected to the idea
of universality, became central to this exercise of boundary work that
sought to disengage the activity of programming from local conventions,
and to transform it into a transcendent and universal body of knowledge.
From this endeavor, programming languages and algorithms emerged as
epistemic objects stripped of any marks that would associate them with spe-
cific hardware. In the 1960s, as Brent Jesiek has noted, programming lan-
guages and algorithms would gain ever more relevance in the design of aca-
demic curricula as part of computer scientists’ efforts to insulate their
nascent discipline from rapid technological development.104 To what point
this strategy succeeded is a question that deserves further discussion. The
rise of software engineering in the early 1970s and the existence of a grow-
ing body of programmers without any professional training are just two
reminders of the limitations of this agenda. Nonetheless, the linguistic con-
ception of computer programming was here to stay, providing a specific
vocabulary, new categories of problems and even scientific paradigms for
the emerging field of computer science, and, most of all, acting as an “island
of semantic stability” in a rapidly changing technological environment.105

More work needs to be done in detailing how programming languages
were consolidated by basing them on the existing notion of a formal lan-
guage developed by logicians in the 1930s and appropriated by linguists dur-
ing the postwar years. In particular, machine-translation projects deserve
further attention as spaces of interaction for the communities of linguists,
logicians, and programming specialists. In any case, by the early 1960s, the
connection between programming languages and formal languages came to
be fully recognized. And programming languages and the programs written
in them were about to acquire a new status as objects of knowledge in their
own right: from being a question of communicating with a machine, pro-
gramming had become a linguistic activity—the writing of programs.

04_Nofre_2nd 40–75.qxp_03_49.3dobraszczyk 568– 2/12/14 1:04 PM Page 66

NOFRE, PRIESTLEY, and ALBERTSK|KWhen Technology Became Language

67

Bibliography

Archival Sources
Allen Newell Collection, Carnegie Mellon University, Pittsburgh
Archives Center, National Museum of American History, Smithsonian

Institution, Washington, D.C.
Charles Katz Papers
John Clifford Shaw Papers
Paul Armer Collection
Unprocessed Computer Documentation Collection

Charles Babbage Institute, University of Minnesota, Minneapolis
Association for Computing Machinery (ACM) Exhibit
Francis V. Wagner Papers
SHARE, Inc. Records

Published Sources
Adams, C. W., ed. Digital Computers: Advanced Coding Techniques—Notes
from a Special Summer Program. Cambridge, MA: MIT Press, 1954.

_____. “Developments in Programming Research.” In Proceedings of the
Eastern Joint Computer Conference: Papers and Discussions Presented at
the Joint ACM–AIEE–IRE Computer Conference Boston, Mass., Novem-
ber 7–9, 1955, edited by Joint ACM–AIEE–IRE Computer Conference,
75–78. New York: IRE, 1956.

Akera, Atsushi. “Voluntarism and the Fruits of Collaboration: The IBM
User Group, Share.” Technology and Culture 42, no. 4 (2001): 710–36.

_____. Calculating a Natural World: Scientists, Engineers, and Computers
during the Rise of U.S. Cold War Research. Cambridge, MA: MIT Press,
2007.

_____. “The Life and Work of Bernard A. Galler (1928–2006).” IEEE An-
nals of the History of Computing 30, no. 1 (2008): 4–14.

American Mathematical Society and National Research Council. Proceed-
ings of a Conference on Training in Applied Mathematics, Columbia
University, New York City, 22–24 October 1953. New York: National
Academies, 1953.

Aspray, William. “From Mathematical Constructivity to Computer Sci-
ence: Alan Turing, John von Neumann, and the Origins of Computer
Science in Modern Logic” (Ph.D. diss., University of Wisconsin–Madi-
son, 1980).

_____. “International Diffusion of Computer Technology, 1945–1955.”
IEEE Annals of the History of Computing 8, no. 4 (1986): 351–60.

Association for Computing Machinery (ACM). Proceedings of the Third
ACM SIGPLAN Conference on History of Programming Languages.
New York: ACM, 2007.

_____, Committee on Nomenclature. First Glossary of Programming Ter-
minology: Report to the Association for Computing Machinery, June

04_Nofre_2nd 40–75.qxp_03_49.3dobraszczyk 568– 2/12/14 1:04 PM Page 67

T E C H N O L O G Y A N D C U L T U R E

JANUARY

2014

VOL. 55

68

1954, box 1, folder 30, Association for Computing Machinery (ACM)
Exhibit, in Charles Babbage Institute, University of Minnesota, Minne-
apolis.

Babbage, Charles. “On the Mathematical Powers of the Calculating En-
gine.” In The Works of Charles Babbage, vol. 3, edited by Martin Camp-
bell-Kelly, 15–61. London: Pickering, 1989.

Backus, J. W. “The Syntax and Semantics of the Proposed International
Algebraic Language of the Zurich ACM-GAMM Conference.” In Infor-
mation Processing: Proceedings of the International Conference on Infor-
mation Processing, Unesco, Paris, 15–20 June 1959, edited by UNESCO,
125–31. Paris: UNESCO, 1960.

Bauer, Friedrich L., and Klaus Samelson. “The Problem of a Common Lan-
guage, Especially for Scientific Numeral Work.” In Information Proc-
essing: Proceedings of the International Conference on Information Proc-
essing, Unesco, Paris, 15–20 June 1959, edited by UNESCO, 120–24.
Paris: UNESCO, 1960.

Bauer, Walter F., Mario L. Juncosa, and Alan J. Perlis. “ACM Publication
Policies and Plans.” Journal of the ACM 6, no. 2 (1959): 121–22.

Bemer, Robert W. “The Status of Automatic Programming for Scientific
Problems.” In Proceedings of the Fourth Annual Computer Applications
Symposium, October 24–25, 1957, edited by Francis C. Bock, 107–17.
Chicago: Armour Research Foundation, 1958.

Bensaude-Vincent, Bernadette. “Languages in Chemistry.” In The Cam-
bridge History of Science: The Modern Physical and Mathematical Sci-
ences, edited by Mary Jo Nye, 174–90. Cambridge: Cambridge Univer-
sity Press, 2003.

Bergin, Thomas J., and Richard G. Gibson Jr. History of Programming Lan-
guages II. New York: ACM Press, 1996.

Berkeley, Edmund C. Giant Brains, or Machines That Think. New York:
John Wiley and Sons, 1949.

Blackwell, Alan F. “The Reification of Metaphor as a Design Tool.” ACM
Transactions on Computer–Human Interaction 13, no. 4 (2006): 490–
530.

Bowden, B. V., ed. Faster Than Thought: A Symposium on Digital Com-
puting Machines. New York: Pitman, 1953.

Bowles, Mark D. “U.S. Technological Enthusiasm and British Technologi-
cal Skepticism in the Age of the Analog Brain.” IEEE Annals of the
History of Computing 18, no. 4 (1996): 5–15.

Bright, Herbert S. “Computer User Groups.” Unpublished document,
1960. (Reprinted in IEEE Annals of the History of Computing 12, no. 1
[1990]: 56–61.)

Brown, J. H., and John W. Carr III. “Automatic Programming and Its
Development on the MIDAC.” In Symposium on Automatic Program-
ming for Digital Computers, 13–14 May 1954, edited by U.S. Navy

04_Nofre_2nd 40–75.qxp_03_49.3dobraszczyk 568– 2/12/14 1:04 PM Page 68

Mathematical Computing Advisory Panel, 84–97. Washington, DC:
U.S. Department of Commerce/Office of Technical Services, 1954.

Bruijn, W. K., and Stichting Studiecentrum voor Administratieve Automa-
tisering. Computers in Europe 1966: A Progress Report on the Develop-
ment of the European Computer Market. Amsterdam: Automatic Infor-
mation Processing Research Centre, 1966.

Bullynck, Maarten, and Liesbeth de Mol. “Setting-up Early Computer
Programs: D. H. Lehmer’s ENIAC Computation.” Archive for Mathe-
matical Logic 49, no. 2 (2010): 123–46.

Burks, Arthur W., Herman H. Goldstine, and John von Neumann. Pre-
liminary Discussion of the Logical Design of an Electronic Computer
Instrument. Princeton, NJ: Institute for Advanced Study, 28 June 1946.

Campbell-Kelly, Martin. From Airline Reservations to Sonic the Hedgehog:
A History of the Software Industry. Cambridge, MA: MIT Press, 2004.

_____, and William Aspray. Computer: A History of the Information Ma-
chine. New York: Basic Books, 1996.

Carr, John Weber, III. “Methods in High-Speed Computation.” In Notes
on Digital Computers and Data Processors: Prepared for Special Summer
Conference at the University of Michigan, edited by John Weber Carr III
and Norman R. Scott, III.5.2.1–38. Ann Arbor: University of Michigan
Press, 1955.

_____. “Conference Summary.” In Proceedings of the Eastern Joint Com-
puter Conference, 10–12 December 1956, edited by Joint Computer
Conference, 147–50. New York: AIEE, 1957.

_____. Computing Programming and Artificial Intelligence: An Intensive
Course for Practicing Scientists and Engineers—Lectures Given at the
University of Michigan, Summer 1958. Ann Arbor: University of Michi-
gan Press, 1958.

_____, and Norman R. Scott, eds. Notes on Digital Computers and Data
Processors: Prepared for Special Summer Conference at the University of
Michigan. Ann Arbor: University of Michigan Press, 1955.

Ceruzzi, Paul E. A History of Modern Computing. Cambridge, MA: MIT
Press, 1998.

Chipps, J., M. Koschmann, S. Orgel, A. Perlis, and J. Smith. “A Mathemati-
cal Language Compiler.” In Association for Computing Machinery
Eleventh Annual Meeting, UCLA, 27–29 August 1956, edited by ACM,
114–17. New York: ACM Press, 1956.

Chun, Wendy Hui Kyong. Programmed Visions: Software and Memory.
Cambridge, MA: MIT Press, 2011.

Colburn, Timothy R., and Gary M. Shute. “Metaphor in Computer Sci-
ence.” Journal of Applied Logic 6, no. 4 (2008): 526–33.

Crowther-Heyck, Hunter. “George A. Miller, Language, and the Computer
Metaphor of Mind.” History of Psychology 2, no. 1 (1999): 37–64.

Dörries, Matthias, ed. “Language as a Tool in the Sciences.” In Experi-

NOFRE, PRIESTLEY, and ALBERTSK|KWhen Technology Became Language

69

04_Nofre_2nd 40–75.qxp_03_49.3dobraszczyk 568– 2/12/14 1:04 PM Page 69

T E C H N O L O G Y A N D C U L T U R E

JANUARY

2014

VOL. 55

70

menting with Tongues: Studies in Science and Language, 1–20. Palo
Alto, CA: Stanford University Press, 2002.

Edwards, Paul N. The Closed World: Computers and the Politics of Dis-
course in Cold War America. Cambridge, MA: MIT Press, 1996.

Ensmenger, Nathan. The Computer Boys Take Over: Computers, Program-
mers, and the Politics of Technical Expertise. Cambridge, MA: MIT
Press, 2010.

Fuller, Matthew. Software Studies: A Lexicon. Cambridge, MA: MIT Press,
2008.

Galison, Peter. “The Ontology of the Enemy: Norbert Wiener and the
Cybernetics Vision.” Critical Inquiry 21, no. 1 (1994): 228–66.

Gibbs, Robert G. “Manpower Supply Down, Military and Industrial
Demand High.” Industrial and Engineering Chemistry 46, no. 6 (1954):
1139–44.

Goldstine, Herman H., and John von Neumann. Planning and Coding of
Problems for an Electronic Computing Instrument: Report on the Mathe-
matical and Logical Aspects of an Electronic Computing Instrument.
Princeton, NJ: Institute for Advanced Study, 1947.

Gorn, Saul. “Planning Universal Semi-Automatic Coding.” In Symposium
on Automatic Programming for Digital Computers, 13–14 May 1954,
edited by U.S. Navy Mathematical Computing Advisory Panel, 74–83.
Washington, DC: U.S. Department of Commerce/Office of Technical
Services, 1954.

_____. “Standardized Programming Methods and Universal Coding.”
Journal of the ACM 4, no. 3 (1957): 254–73.

_____, and Wallace Manheimer. The Electronic Brain and What It Can
Do. Chicago: Science Research Associates, 1956.

Gruenberger, Fred J. “A Short History of Digital Computing in Southern
California.” Computing News 7, no. 145 (1959). (Reprinted in IEEE
Annals of the History of Computing 2, no. 3 [1980]: 246–50.)

Haigh, Thomas. “Software in the 1960s as Concept, Service, and Product.”
IEEE Annals of the History of Computing 24, no. 1 (2002): 5–13.

Harper, Margaret H. “Subroutines: Prefabricated Blocks for Building.”
Computers and Automation 3, no. 3 (1954): 14–15.

Harris, Randy Allen. “Chomsky’s other Revolution.” In Chomskyan (R)ev-
olutions, edited by Douglas A. Kibbee, 238–64. Amsterdam: John Ben-
jamins Publishing Company, 2010.

Hashagen, Ulf, Reinhard Keil-Slawik, and Arthur L. Norberg. History of
Computing: Software Issues. New York: Springer, 2002.

Hemmes, David. “FORTRANSIT Recollections.” IEEE Annals of the His-
tory of Computing 8, no. 1 (1986): 70–73.

Holmevik, Jan Rune. Inside Innovation: The Simula Research Laboratory
and the History of the Simula Programming Language. Oslo: Simula Re-
search Laboratory, 2004.

04_Nofre_2nd 40–75.qxp_03_49.3dobraszczyk 568– 2/12/14 1:04 PM Page 70

Hopper, Grace M. “The Education of a Computer.” In Proceedings of the
1952 ACM National Meeting (Pittsburgh), edited by ACM and C. V. L.
Smith, 243–49. New York: ACM Press, 1952.

_____, et al. “Glossaries of Terms—More Discussion.” Computers and
Automation 3, no. 3 (1954): 21–24.

Hurd, Cuthbert C., ed. “Special Issue on the IBM 701.” IEEE Annals of the
History of Computing 5, no. 2 (1983).

Huskey, Harry D. “NELIAC—a Dialect of ALGOL.” Communications of
the ACM 3, no. 8 (1960): 463–68.

Hutchins, William John. Machine Translation: Past, Present, Future. Chi-
chester, UK: Ellis Horwood, 1986.

IBM Corporation. Specifications for the IBM Mathematical FORmula
TRANslating System FORTRAN. New York: IBM, 1954.

_____. Reference Manual FOR TRANSIT Automatic Coding System for the
IBM 650 Data Processing System. New York: IBM, 1957.

Jeon, Chihyung. “Flying Weather Men and Robot Observers: Instruments,
Inscriptions, and Identities in US Upper-air Observation, 1920–1940.”
History and Technology 26, no. 2 (2010): 119–45.

Jesiek, Brent K. “Between Discipline and Profession: A History of Persis-
tent Instability in the Field of Computer Engineering, circa 1951–2006”
(Ph.D. diss., Virginia Polytechnic Institute and State University, 2006).

Johnson, Gerald J. “Of Metaphor and the Difficulty of Computer Dis-
course.” Communications of the ACM 37, no. 12 (1994): 97–102.

Joint AIEE-IRE Computer Conference. Review of Electronic Digital Com-
puters: Joint AIEE-IRE Computer Conference—Papers and Discussions
Presented at the Joint AIEE-IRE Computer Conference, Philadelphia,
Pa., December 10–12, 1951. New York: AIEE, 1952.

Kaiser, David. “Cold War Requisitions, Scientific Manpower, and the Pro-
duction of American Physicists after World War II.” Historical Studies
in the Physical and Biological Sciences 33, no. 1 (2002): 131–59.

Kay, Lily. Who Wrote the Book of Life? A History of the Genetic Code. Palo
Alto, CA: Stanford University Press, 2000.

Kline, Ronald. “Cybernetics, Automata Studies, and the Dartmouth Con-
ference on Artificial Intelligence.” IEEE Annals of the History of Com-
puting 33, no. 4 (2011): 5–16.

Knuth, Donald E. Literate Programming. Palo Alto, CA: Center for the
Study of Language and Information, 1992.

_____, and Luis Trabb Pardo. “The Early Development of Programming
Languages.” In A History of Computing in the Twentieth Century: A
Collection of Essays, edited by Nicholas Metropolis, Jack Howlett, and
Gian-Carlo Rota, 197–273. New York: Academic Press, 1980.

Laning, J. Halcombe, and Neal Zierler. A Program for Translation of Math-
ematical Equations for Whirlwind I. Cambridge, MA: Instrumentation
Laboratory/MIT, 1954.

NOFRE, PRIESTLEY, and ALBERTSK|KWhen Technology Became Language

71

04_Nofre_2nd 40–75.qxp_03_49.3dobraszczyk 568– 2/12/14 1:04 PM Page 71

Laszlo, Pierre. “Conventionalities in Formula Writing.” In Tools and Modes
of Representation in the Laboratory Sciences, edited by Ursula Klein, 47–
60. Dordrecht, Netherlands: Kluwer Academic Publishers, 2001.

Lee, J. A. N. “Pioneer Day, 1982.” IEEE Annals of the History of Computing
6, no. 1 (1984): 7–14.

_____, ed. “Special Issue, COBOL: 25th Anniversary.” IEEE Annals of the
History of Computing 7, no. 4 (1985).

Lehmer, Derrick H. “Welcoming Address.” In Proceedings of the Western
Computer Conference, Los Angeles, California, February 11–12, 1954, 7–
8. New York: American Institute of Electrical Engineers, 1954.

Longo, Bernadette. “Metaphors, Robots, and the Transfer of Computers to
Civilian Life.” Comparative Technology Transfer and Society 5, no. 3
(2007): 253–73.

Luebbert, William F., and Percy W. Collom Jr. “Signal Corps Research and
Development on Automatic Programming of Digital Computers.”
Communications of the ACM 2, no. 2 (1959): 22–27.

Mahoney, Michael S. “What Makes the History of Software Hard?” IEEE
Annals of the History of Computing 30, no. 3 (2008): 8–18.

Martin, C. Dianne. “The Myth of the Awesome Thinking Machine.” Com-
munications of the ACM 36, no. 4 (1993): 120–33.

Martin-Nielsen, Janet. “Private Knowledge, Public Tensions: Theory Com-
mitment in Postwar American Linguistics” (Ph.D. diss., University of
Toronto, 2009).

“Mathematical Machine.” Science News-Letter 48, no. 19 (1945): 291.
McLaren, Angus. Reproduction by Design: Sex, Robots, Trees, and Test-
Tube Babies in Interwar Britain. Chicago: University of Chicago Press,
2012.

Mindell, David A. Between Human and Machine: Feedback, Control, and
Computing before Cybernetics. Baltimore: Johns Hopkins University
Press, 2002.

Mirowski, Philip, and Esther-Mirjam Sent. “The Commercialization of
Science and the Response of STS.” In The Handbook of Science and
Technology Studies, 3rd ed., edited by Edward J. Hackett, Olga Amster-
damska, Michael E. Lynch, and Judy Wajcman, 635–89. Cambridge,
MA: MIT Press, 2008.

Naur, Peter, J. W. Backus, F. L. Bauer, et al. “Report on the Algorithmic
Language ALGOL 60.” Communications of the ACM 3, no. 5 (1960):
299–314.

“News and Notices.” Communications of the ACM 1, no. 2 (1958): 6–16.
Nofre, David. “Unraveling Algol: US, Europe, and the Creation of a Pro-

gramming Language.” IEEE Annals of the History of Computing 32, no.
2 (2010): 58–68.

Nye, David E. Electrifying America: Social Meanings of a New Technology,
1880–1940. Cambridge, MA: MIT Press, 1992.

T E C H N O L O G Y A N D C U L T U R E

JANUARY

2014

VOL. 55

72

04_Nofre_2nd 40–75.qxp_03_49.3dobraszczyk 568– 2/12/14 1:04 PM Page 72

NOFRE, PRIESTLEY, and ALBERTSK|KWhen Technology Became Language

73

Orgel, Sylvia. Purdue Compiler General Description. West Lafayette, IN:
Purdue Research Foundation, 1958.

Paulsen, Gard. “Software in Telecommunications and the Programming
Language Chili, 1974–1999” (Ph.D. diss., BI Norwegian Business
School, 2011).

Perlis, Alan J. “Two Thousand Words and Two Thousand Ideas—the 650
at Carnegie.” IEEE Annals of the History of Computing 8, no. 1 (1986):
42–46.

_____, and J. W. Smith. “A Mathematical Language Compiler.” In Auto-
matic Coding: Proceedings of the Symposium Held January 24–25, 1957,
at the Franklin Institute in Philadelphia, edited by Franklin Institute,
87–102. Lancaster, PA: Franklin Institute, 1957.

_____, and Klaus Samelson. “Preliminary Report: International Algebraic
Language.” Communications of the ACM 1, no. 12 (1958): 8–22.

Pestre, Dominique. Science, Argent et Politique: Un Essai d’Interprétation.
Paris: Quae, 2008.

Pflüger, Jörg. “Language in Computing.” In Experimenting with Tongues:
Studies in Science and Language, edited by Matthias Dörries, 125–62.
Palo Alto, CA: Stanford University Press, 2002.

Priestley, Mark. A Science of Operations: Machines, Logic and the Invention
of Programming. London: Springer-Verlag London Limited, 2011.

Pursell, Carroll W. “Technologies as Cultural Practice and Production.”
Technology and Culture 51, no. 3 (2010): 715–22.

Quarles, Donald A. “Need of Scientific Manpower.” Science News-Letter
67, no. 10 (1955): 154–57.

Ransom, Harry H. “Scientific Manpower and National Security.” Journal of
the American Society for Naval Engineers 68, no. 4 (1956): 673–76.

Remington Rand Inc. “Preface.” In UNIVAC Short Code. Philadelphia:
Eckert-Mauchly Division/Remington Rand Inc., 24 October 1952.

_____. “Formation of USE—a Cooperative Organization of 1103A Users,
16 February 1956.” 1103 Central Exchange Newsletter Number 8, Febru-
ary 1956, 264–65, available at http://bitsavers.trailing-edge.com/pdf/
univac/1103/PX71900-8_CentrExchNewsl%238_Feb56.pdf (accessed
15 December 2013).

Rogers, T. H. “Supply and Demand of Technical Personnel in American
Industry.” School Science and Mathematics 53, no. 2 (1953): 87–96.

Rosen, Saul, ed. “Programming Systems and Languages: A Historical
Survey.” In AFIPS ’64 (Spring): Proceedings of the April 21–23, 1964,
Spring Joint Computer Conference, 1–15. New York: ACM, 1964.

Rosenblueth, Arturo, Norbert Wiener, and Julian Bigelow. “Behavior,
Purpose and Teleology.” Philosophy of Science 10, no. 1 (1943): 18–
24.

Rydell, Robert W. “The Fan Dance of Science: American World’s Fairs in
the Great Depression.” Isis 76, no. 4 (1985): 525–42.

04_Nofre_2nd 40–75.qxp_03_49.3dobraszczyk 568– 2/12/14 1:04 PM Page 73

T E C H N O L O G Y A N D C U L T U R E

JANUARY

2014

VOL. 55

74

Sammet, Jean E. Programming Languages: History and Fundamentals.
Englewood Cliffs, NJ: Prentice-Hall, 1969.

_____. “The Early History of COBOL.” In History of Programming Lan-
guages, edited by Richard L. Wexelblat, 199–243. New York: Academic
Press, 1981.

Scott, Allen J. “The Aerospace-Electronics Industrial Complex of Southern
California: The Formative Years, 1940–1960.” Research Policy 20, no. 5
(1991): 439–56.

Shannon, Claude E. “A Mathematical Theory of Communication.” Bell
System Technical Journal 27, no. 3 (1948): 379–423.

_____. “A Mathematical Theory of Communication.” Bell System Techni-
cal Journal 27, no. 4 (1948): 623–56.

Shapin, Steven. “‘The Mind Is Its Own Place’: Science and Solitude in Sev-
enteenth-Century England.” Science in Context 4, no. 1 (1991): 191–
218.

Simonson, G. R. “Missiles and Creative Destruction in the American Air-
craft Industry, 1956–1961.” Business History Review 38, no. 3 (1964):
302–14.

Smith, R. Blair. “The IBM 701—Marketing and Customer Relations.” IEEE
Annals of the History of Computing (“Special Issue on the IBM 701”) 5,
no. 2 (1983): 170–72.

Steel, T. B. “UNCOL: The Myth and the Fact.” Annual Review in Automat-
ic Programming 2 (1961): 325–44.

Stibitz, George R. “A Manual of Operation for the Automatic Sequence
Controlled Calculator.” American Mathematical Monthly 54, no. 1
(1947): 57–59.

_____. “The Organization of Large-Scale Computing Machinery.” In
Proceedings of a Symposium on Large-Scale Digital Calculating Machin-
ery, 91–100. Cambridge, MA: Harvard University Press, 1948.

Strong, J., J. Wegstein, A. Tritter, J. Olsztyn, O. Mock, and T. Steel. “The
Problem of Programming Communication with Changing Machines:
A Proposed Solution.” Communications of the ACM 1, no. 8 (1958):
12–18.

Tomalin, Marcus. Linguistics and the Formal Sciences: The Origins of Gen-
erative Grammar. New York: Cambridge University Press, 2006.

Turing, Alan M. “On Computable Numbers, with an Application to the
Entscheidungsproblem.” Proceedings of the London Mathematical Soci-
ety, second series, 42 (1936–37): 230–65.

Tympas, Aristotle. “From Digital to Analogue and Back: The Ideology of
Intelligent Machines in the History of the Electrical Analyzer, 1870s–
1960s.” IEEE Annals of the History of Computing 18, no. 4 (1996): 42–
48.

U.S. Congress, Joint Committee on Atomic Energy. Engineering and

04_Nofre_2nd 40–75.qxp_03_49.3dobraszczyk 568– 2/12/14 1:04 PM Page 74

Scientific Manpower in the United States, Western Europe and Soviet
Russia. Washington, DC: U.S. Government Printing Office, 1956.

U.S. Navy Mathematical Computing Advisory Panel, ed. Symposium on
Automatic Programming for Digital Computers, 13–14 May 1954.
Washington, DC: U.S. Department of Commerce/Office of Technical
Services, 1954.

Weik, Martin H. A Survey of Domestic Electronic Digital Computing Sys-
tems. Ballistics Research Laboratories Report no. 971. Aberdeen, MD:
Aberdeen Proving Ground, December 1955.

Wexelblat, Richard L. History of Programming Languages I. New York:
Academic Press, 1981.

Wiener, Norbert. Cybernetics or Control and Communication in the Ani-
mal and the Machine. New York: John Wiley and Sons, 1948.

Wilkes, Maurice V., David J. Wheeler, and Stanley Gill. The Preparation of
Programs for an Electronic Digital Computer, with Special Reference to
the EDSAC and the Use of a Library of Subroutines. Cambridge, MA:
Addison-Wesley Press, 1951.

Williams, Samuel R. “Bell Telephone Laboratories’ Relay Computing Sys-
tem.” In Proceedings of a Symposium on Large-Scale Digital Calculating
Machinery, 41–68. Cambridge, MA: Harvard University Press, 1948.

Wolfe, Ruth W. “The Technical Manpower Shortage.” School Science and
Mathematics 57, no. 1 (1957): 63–70.

NOFRE, PRIESTLEY, and ALBERTSK|KWhen Technology Became Language

75

04_Nofre_2nd 40–75.qxp_03_49.3dobraszczyk 568– 2/12/14 1:04 PM Page 75

