
Dijkstra’s Rallying Cry for Generalization:
The Advent of the Recursive Procedure,

late 1950s — early 1960s

Edgar G. Daylight∗

Autumn, 2010

Abstract

According to J.A.N. Lee in 1996, computer scientists “are reaching
the stage of development where each new generation of participants is
unaware both of their overall technological ancestry and the history of
the development of their speciality, and have no past to build upon” [1,
p.54]. A technically and historically accurate account, as attempted here,
can help us, computer scientists, grasp some of the fundamental ideas un-
derlying our discipline. This paper describes some early contributions of
E.W. Dijkstra by elaborating on his involvement in putting forward and
implementing the recursive procedure as an ALGOL60 language construct.
Particular attention is paid to Dijkstra’s generalizing style of solving prob-
lems.

Keywords: recursive procedure, machine independence, ALGOL, Eds-
ger Dijkstra

1 Introduction
Half a century ago, the 31-year old Dutchman, Edsger W. Dijkstra (1930–2002),
was sitting in Rome’s “Palazzo dei Congressi” attending the Panel Discussion on
‘Philosophies for Efficient Processor Construction’ at the International Sympo-
sium of Symbolic Languages in Data Processing (March, 1962). Together with
Naur, Duncan, and Garwick, he was one of the few strong proponents of the
recursive procedure in the ALGOL60 programming language. Even though he
had become famous more than a year before the symposium by being one of
the first to build an ALGOL60 compiler that could handle recursive procedures,
a large group of panel members remained sceptical about its usefulness.

∗He can be contacted by email (egdaylight@dijkstrascry.com) or by postal mail (Sint Lam-
bertusstraat 3, B-3001 Heverlee, Belgium). He has a PhD in computer science, was recently
a post-doc in History of Computing at the FNWI Institute voor Informatica (University of
Amsterdam), and has the Belgian nationality.

1

Inspection of the proceedings [2] shows that almost every panel member
had a slightly different view towards why the recursive procedure should or
should not belong to a machine-independent programming language, such as
ALGOL60. For instance, and as is explained in greater detail later, Dijkstra
heavily supported the recursive procedure due to linguistic reasons. In con-
trast, Strachey and Samelson claimed that general language constructs, such as
the recursive procedure, typically led to inefficient object programs. Strachey
wanted to restrict (but not necessarily discard) the use of recursive procedures [2,
p.368,373]. Samelson, on the other hand, was primarily concerned with the im-
mediate economical considerations: “the final judge in matters of efficiency is
money”. Samelson wanted to minimize the financial cost of a complete project:
designing a programming language, building a compiler, compiling programs,
and executing those programs. In his opinion, the efficiency of the running pro-
gram influenced the total cost the most and, therefore, he preferred to avoid the
recursive procedure [2, p.364,372].

The tension between several panel members was apparent [2, p.373]. For
instance, Naur’s views, which were very similar to those of Dijkstra, were in
sharp contrast to Samelson’s economic considerations. And, Seegmüller’s nasty
but loudly applauded comment certainly did not help ease the tension:

And the question is –to state it once more– that we want to work with
this language, really to work and not to play with it, and I hope we don’t
become a kind of Algol play-boys. [2, p.375]

The comment was directed towards Dijkstra, Naur, and other linguists; i.e.,
researchers who favored general language constructs.

In McCarthy’s absence, Garwick seems to have been the only person at
the conference to have openly claimed the potential usefulness of the recursive
procedure as a programming construct [2, p.369]. In hindsight unsurprisingly,
given that ALGOL60’s main application domain was numerical analysis1 and that,
even during the early 1960s, the recursive procedure was not used by numerical
analysts. For instance, only by 1963 did the Swiss mathematician Rutishauser
find two examples of recursion for numerical computations which he himself
found convincing. He also contrasted his two examples with others2 in which
recursion could, and in his opinion should, be replaced by iteration [5].

The ALGOL60 report [6], published in May 1960, quickly led to non-numerical
applications of the recursive procedure. It for instance enabled Hoare to express
his intuitive ideas on sorting, and resulted in his now-famous QuickSort [7],
which he published as a recursive ALGOL60 program [8, p.145]. Besides the
recursive procedure, ALGOL60 was also innovative due to its recursive syntax,
formalized in Backus Naur Form (BNF) notation. The formalized recursive syn-
tax, in turn, led several researchers to design their ALGOL60 compilers as a
collection of mutually recursive procedures. Grau, for instance, described in a

1See [3, p.121-122] and [4, p.100-101].
2An example Rutishauser gave was calculating the factorial of a positive number n. It is

more economical (both in space and time) to calculate it by iteration by means of a for loop
than by recursive-procedure activations.

2

pseudo ALGOL60 language what we would today call a recursive-descent com-
piler3. A similar but later example is Hoare’s compiler for the Elliott machine
(cf. [8, p.146]).

Contributions of this Paper

If numerical analysts did not use recursive procedures in their work, and if
ALGOL60 was primarily designed for numerical computations, why then did
ALGOL60’s official definition [6] include the recursive procedure as a language
construct? And, why was it such a controversial topic in Rome 1962? As is
elaborated on later, McCarthy had, based on his experience with recursion in
LISP, unsuccessfully attempted to put forward the recursive procedure as an
ALGOL60 language construct. Instead, it were the linguistically-minded Amster-
dammers, Van Wijngaarden and Dijkstra, who had convinced the editor of the
ALGOL60 report, Naur, to include recursive procedures in ALGOL60. However,
these three men knew that recursive procedures were heavily opposed by other
influential ALGOL60 researchers. Why then did the Dutch persevere, given that
they did not need it in their programming?

ALGOL60’s definition was discussed on the international scene during the late
1950s and it was officially defined in 1960. Its definition [6] strongly suggests
that it had been defined without having a particular machine in mind: its
syntax was presented with the help of a formal language (BNF, discussed later)
and its semantics were stated without mentioning specific machine features.
Placing ALGOL60 in an historical context, however, suggests otherwise. The
programming systems prior to ALGOL60 had typically been defined in terms of
specific machine features and by several researchers who would later become
ALGOL60 actors. It therefore seems rather unlikely that all ALGOL60 actors were
indeed reasoning machine independently during the late 1950s and early 1960s.
In this paper, several people (Bauer, Samelson, Strachey, and Wilkes) will be
mentioned in this regard as researchers who primarily reasoned in terms of
machine efficiency and less so as linguists (à la Van Wijngaarden and Dijk-
stra) who focused on general language constructs prior to dealing with machine-
specific problems.

The shared ambition, among all ALGOL60 actors, was to implement a uni-
versal, machine-independent programming language in conformance with the
ALGOL60 report [6]. But it was a priori not clear to many ALGOL60 actors
whether all of its language constructs were indeed implementable [11, p.12-13].
In practice, various ALGOL60 dialects were implemented, dialects which were
influenced by local programming habits and specific machine features. For ex-
ample, the British researchers Strachey and Wilkes wanted to restrict the official
ALGOL60 definition –and the use of recursion in particular– due to specific fea-
tures of contemporary machines, as explained in [12] and as heavily criticized
by Dijkstra [13, 14, p.16-18, p.40-42].

3He published his recursive pseudo-ALGOL60 program in [9]; i.e., before the publication of
Hoare’s QuickSort. And, also Irons [10] should be mentioned in this regard.

3

Most early ALGOL60 compilers were not able to handle all language constructs
and the recursive procedure in particular4. Dijkstra and Zonneveld, by contrast,
did succeed in building one of the first ALGOL60 compilers which could handle
almost all of the language, including the recursive procedure. It was completed
in August 1960 and impressed several researchers. In Naur’s words:

The first news of the success of the Dutch project, in June 1960, fell like
a bomb in our group. [18, p.119]

Essential to the Dijkstra-Zonneveld compiler was its run-time stack. Yet, the
stack had long been invented by several independent researchers and its run-time
usage was not novel either, as Dijkstra also explicitly acknowledged when he de-
scribed some of the key ideas underlying the Dijkstra-Zonneveld compiler [19,
p.313]. On the other hand, it is equally clear that the Dijkstra-Zonneveld com-
piler was indeed a technical innovation, as Rosen’s comment illustrates:

Almost everyone involved in writing an Algol compiler has used some
of the ideas developed in connection with the Algol Compiler written
by professor Dijkstra and his colleagues at the Mathematisch Centre in
Amsterdam. [20, p.181]

What, then, made the Dijkstra-Zonneveld compiler so special?
Answers to the aforementioned questions are presented in the sequel by

describing the work of some key players who were involved in the ALGOL60
effort. By doing so, two main messages are conveyed in this paper.

The first message is that the early history of programming languages can
be viewed as a dichotomy between specialization and generalization. Special-
ization refers to language restrictions, static (compile-time) solutions, and the
exploitation of machine-specific facilities —in the interest of efficiency. Gener-
alization refers to general language constructs, dynamic (run-time) solutions,
and machine-independent language design —in the interest of correctness and
reliability. The dichotomy becomes effective if we keep in mind, throughout the
sequel, that most ALGOL60 researchers were neither completely specialists nor
generalists, and that they initially did not characterize each other as such. Only
after 1960 did the dichotomy become increasingly apparent.

The second message conveyed in this paper is that Dijkstra’s continual appeal
for generalization led to practical breakthroughs in compiler technology, while
some prominent ALGOL60 researchers who favored language restrictions in the
interest of obtaining immediate practical results failed in their endeavours. On
the other hand, however, Dijkstra’s successes will be put into perspective as
well, by showing that the dichotomy outlived the ALGOL60 effort, contrary to
the claims Dijkstra made in Munich, half a year after the Rome conference.

Three disclaimers conclude this introduction. First, an historical-accurate
narrative, as attempted here, often implies mathematical inaccuracy with re-
spect to the current state of the art. In this paper, the recursive procedure is

4E.g., the ALCOR compilers described in [15], the Danish DASK ALGOL compiler [16, p.441],
and SMALGOL61 [17, p.502].

4

described in terms of what computer practitioners of the late 1950s and early
1960s understood by it. Therefore, the recursive procedure is presented in-
formally and without any mention of termination proofs. Likewise, noting, in
hindsight, that Dijkstra, McCarthy, and others had made mistakes in their pi-
oneering work has practical relevance [21, 22], but lies outside the scope of this
paper. Second, the history of ideas is much less concerned with “firsts” than it
is with the contextual development of ideas [1]. For example, the fact that Grau
and Hoare, mentioned above, used ALGOL60’s recursive procedure in unantici-
pated ways is far more important than noting that Grau did so before Hoare.
Third, this paper presents a synthesis of Dijkstra’s work on ALGOL60. It there-
fore most definitely does not address all of his contributions. When discussing
some of his papers, I will often only discuss parts of their contents.

2 Specialization versus Generalization
The end of World War II coincided with the beginning of the computer era.
As two victors of the war, the USA and England were among the first to build
computers. Continental Europe, by contrast, was in turmoil. Relying heavily on
the Marshall Plan for economic revival, several continental-European researchers
traveled to the USA and England to acquire knowledge in computing. In 1947,
for example, the Dutch mathematician Van Wijngaarden visited England and
the USA [23, p.102], and in 1949 Rutishauser from Switzerland visited the
computer pioneers Aiken at Harvard and Von Neumann at Princeton [24, p.2].

2.1 USA
Besides building computing machines, American researchers were also quick in
seeking easier ways to instruct their machines. In May 1954, the American Navy
organized a conference in Washington D.C. entitled Automatic Programming for
Digital Computers [25]. Instead of having a programmer tediously write down
machine code, the conference attendees wanted to be able to provide the pro-
grammer with a more mathematical notation in which he could express himself
more easily. The research challenge was to design a computer program that
could automatically translate the mathematical expressions of the programmer
into the instructions of the machine. Various automatic-translation programs
were presented and discussed at the conference.

Most presentations at the 1954 conference covered mathematical notations
and automatic-translation programs that only worked for a specific kind of ma-
chine. Two exceptions, however, were the presentations of Gorn [26] and Brown
& Carr [27]. These three researchers discussed translation techniques that were
applicable for any type of machine. And, to obtain such a general technique,
they realized that the mathematical notation (intended for the programmer) had
to be independent of any computing machine. That is, the mathematical no-
tation had to be a machine-independent language. Furthermore, Gorn, Brown,
and Carr sought a universal machine-independent language; i.e., a language

5

that was close to the universal language of mathematics and, hence, applicable
to a large class of mathematical problems.

To appreciate the extreme stance taken by Gorn, Brown, and Carr, two
observations are in order. First, the aspired universal, machine-independent
language embodied generality in two ways: it was intended for various mathe-
matical problems and a variety of computing machines. Second, given the lim-
ited storage sizes and execution speeds of contemporary computing machines,
programmers in the 1950s did their utmost best to optimize the efficiency of
their programs. That is, they applied special programming tricks in order to
obtain programs that were economical in terms of program size and computation
time. To apply such tricks, they exploited specific details of the mathematical
problem that their computer program was intended to solve and they also ex-
ploited specific details of their computing machine. Hence, specialization –in
contrast to generalization– was the prime occupation in computing during the
1950s. A general language, such as a universal machine-independent language,
was viewed by many as unrealistic, because of the inefficiencies it would incur.

Due to its generality, Brown and Carr acknowledged that their aspired lan-
guage would, indeed, incur a run-time penalty in efficiency, compared to existing
machine-specific programming techniques. But, according to them, this penalty
would be outweighed by a decrease in programming time and programming er-
rors. For, by being completely ignorant of what machine would execute his
mathematical expressions, the programmer only had to convert his mathemat-
ical problem into the mathematical notation of the universal language. He did
not have to incorporate machine-specific characteristics in his manual labor. To
get this message across, Brown and Carr advocated for an over-all measure of
effectiveness, which included the new criteria of programming time and pro-
gram correctness, along with the more traditional criteria of program size and
computation time [27, p.89].

2.1.1 Speedcoding & FORTRAN

Also present at the 1954 conference were Backus and Herrick. They described a
high-level and machine-dependent system, called Speedcoding. Instead of hav-
ing to directly program in machine code, the aspiration was that a programmer
could solely write down the formulas for the numerical problem at hand (i.e.,
declaratively). Yet, in order to obtain fast executables, the programmer would
also be able to express how the data should be transferred from one storage
hierarchy to another [28, p.111-112]. In their own words:

[T]he question is, can a machine translate a sufficiently rich mathematical
language into a sufficiently economical machine program at a sufficiently
low cost to make the whole affair feasible? [28, p.112]

To obtain an affirmative answer, Speedcoding and the later FORTRAN were de-
signed for specific machines and, hence, at the price of machine portability [20,
29, p.11, p.151]. The tendency to specialize also reflects in the program con-
structs: do statements (i.e., for loops) had to have static bounds and it was

6

<digit> := 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

< integer> := <digit> | < integer><digit>

<realPart> := . < integer> | < integer>. |
< integer>.< integer>

<real> := <realPart> | +<realPart> |
−<realPart>

Table 1: An example in Backus Naur Form.

not possible to express potentially unbounded while loops, nor recursive proce-
dures [29, p.145,159-160].

Backus: from FORTRAN to ALGOL58

After having worked on FORTRAN, Backus joined the ALGOL effort and made a
significant contribution in [30], by devising a formal notation to describe the
syntax of ALGOL58. Backus’s notation almost went unnoticed however; it was
Naur who grasped its potential and, who, after making some small but impor-
tant modifications, used it to define ALGOL60’s syntax. The notation is therefore
called Backus Naur Form (cf. [31, 32] and [4, p.99]).

To appreciate the conceptual leap that Backus took from FORTRAN to ALGOL58,
it is important to note that, prior to his contribution, computer practitioners
described syntax informally (e.g., in verbose English). For example, consider
the definition: A real number is

any sequence of decimal digits with a decimal point preceding or inter-
vening between any 2 digits or following a sequence of digits, all of this
optionally preceded by a plus or minus sign.

The previous passage is similar to how a real number was defined in ALGOL58 [33,
p.11] in that no mention is made of the finiteness of the machine. By including
machine-specific constants, which do express the finite-storage limitations of the
machine, the previous definition can be extended to:

The number must be less than 1038 in absolute value and greater than
10−38 in absolute value.

The previous two passages, together, constitute the original definition of a real
number in FORTRAN [34].

In short, both FORTRAN’s and ALGOL58’s syntax were defined informally. The
syntax of FORTRAN was defined with and that of ALGOL58 was defined without
finite-storage limitations in mind. The informal definitions were ambiguous,
incomplete, and often lengthy: FORTRAN’s and ALGOL58’s syntax were very cum-
bersome to use in practice [35, p.26-27].

Continuing with the real-number example, the BNF equivalent of the first
passage, presented above, is depicted in Table 1. With | denoting or, Line 1

7

expresses that a digit is either 0 or 1 or 2 or . . . or 9. Line 2, in turn, recursively
defines a sequence of digits to be either a digit or an integer concatenated with
a digit. Line 3 defines the real part of a real number to either be an integer
preceded by or followed by a decimal point or an integer followed by a decimal
point and an integer. Finally, Line 4 defines a real number to have no sign, a
plus sign, or a minus sign.

Note that Table 1 is only the BNF equivalent of the first passage, presented
above. The finite-storage limitations of the machine (cf. the second passage)
can not be expressed concisely in BNF notation. Indeed, the syntactic recursion,
exemplified in Line 2 in Table 1, is what made BNF notation so concise: Line 2
allows an arbitrarily long but finite integer to be written down in ALGOL60 and,
hence, also integers that simply could not fit in every computer’s memory!

Backus’s conceptual leap of abstracting away the computing machine’s finite
limitations cannot be stressed enough. Unlike his work during the FORTRAN
years, where he focused on the design of the translator to obtain efficient machine
code, Backus’s abstraction allowed him to solely focus on the language. On the
one hand, Backus was of course aided by ALGOL58’s abstraction of finite sto-
rage. On the other hand, as we shall see, many computer practitioners did not
let go of machine-specific features while designing and implementing a machine-
independent programming language.

2.1.2 List Processing

Not present at the 1954 conference but equally important to mention are Newell,
Shaw, and Simon. By 1957, these three men had implemented a list-processing
system for automatic theorem proving [36, 37]. Their system was called the
Logic Theory Machine (LT) and it served the purpose of trying to better un-
derstand how effective human-problem solving works in reality, such as finding
a proof of a mathematical theorem, playing chess, or discovering scientific laws
from data [37, p.218-219]. They used their Information Processing Language
(IPL) to implement LT [36, p.232].

In contrast to the many numerical programs implemented during the 1950s,
LT was symbolic in nature. While numerical programs were primarily static
in the sense that e.g. the set of variables and constants (to be used at run
time) could be determined in advance (i.e., prior to program execution), LT
was primarily dynamic. For instance, the number, kind, and order of logical
expressions used in LT were completely variable. Therefore, run-time translation
was needed and carried out by an interpreter [36, p.230,231,235].

IPL was a very flexible programming language. A user could express the cre-
ation of a list during the course of computation. In addition, a user could create
lists that consisted of other lists or lists of lists, etc. Adding, deleting, inserting,
and rearranging items in a list at any time was possible. Finally, it was also
feasible for an item to appear in any number of lists simultaneously [36, p.231].
In modern terms, dynamic memory management and aliasing characterized the
work of Newell, Shaw, and Simon.

IPL was not only flexible in terms of memory assignments, but also in terms

8

of defining processes. There was no limitation on the size and complexity of
hierarchical definitions. Likewise, no restriction was enforced on the number of
references in the instructions or on what was referenced. Of particular interest
is that processes could be defined implicitly, e.g. by recursion [36, p.231]. More
generally:

[T]he programmer should be able to specify any process in whatever way
occurs naturally to him in the context of the problem. If the programmer
has to ‘translate’ the specification into a fixed and rigid form, he is doing
a preliminary processing of the specifications that could be avoided. [36,
p.231]

In short, Newell, Shaw, and Simon focused more on the flexibility of their IPL
language than on machine efficiency. Their first pseudo code was developed
in a machine-independent way with the purpose of precisely specifying a logic
theory machine. Only afterwards did they define IPL and in accordance with
the RAND JOHNNIAC machine [36, p.232]. Not surprisingly, IPL had some short-
comings in terms of memory space and computation time, shortcomings which
were not considered too problematic:

[F]or it seemed to us that these costs could be brought down by later
improvements, after we had learned how to obtain the flexibility we re-
quired. [36, p.232]

Hence, the prime concern was the language and the ease of being able to express
oneself in that language for the problem at hand.

McCarthy: from FORTRAN to LISP

Likewise, John McCarthy was, contrary to the many numerical analysts of the
1950s, trying to use recursion in his programming. For, while working at IBM in
the summer of 1958, he tried to write a FORTRAN program that would differentiate
algebraic expressions, such as the expression y2. To calculate the derivative of
y2 –which is equal to 2y times the derivative of y– McCarthy realized that
he needed recursive conditional expressions. Since FORTRAN did not contain
recursion, he tried to add it to the language, but without success. This led him
to develop his own list-processing, recursive, command language LISP [38, p.27],
which was greatly inspired by the work of Newell, Shaw, and Simon [39, p.187].

2.2 Western Europe
Compared to the USA, Western Europe had few computing groups during the
1950s [40, p.352]. One such group was the Swiss-German ZMD, which consisted of
researchers from Zurich (e.g., Rutishauser), Munich (e.g., Bauer and Samelson),
and Darmstadt (e.g., Bottenbruch) [41, p.61]. These three cities collaborated
closely in scientific computing but were hindered by the diversity of computing
machines: different machines were being built in each of these cities. To over-
come this diversity, Rutishauser appealed for a “unified algorithmic notation” in

9

the 1955 GaMM5 meeting and the ZMD group subsequently became more involved
in researching automatic-translation techniques [35, 41, p.5, p.61].

In May 1958, a one-week ACM-GaMM meeting was held in Zurich, signifying
the collaboration between an American delegation, led by Carr, and the ZMD
group [33]. The collective focus was to define a universal, machine-independent
programming language. The chosen name for the language was initially IAL
(International Algorithmic Language), later denoted as ALGOL58, but would by
January 1960 change into ALGOL (Algorithmic Language), and is denoted as
ALGOL60 in this text [35, 42, p.35, p.79].

The intention of ALGOL58 was threefold [33, p.9].

1. The new language should be as close as possible to standard mathematical
notation and be readable with little further explanation.

2. It should be possible to use it for the description of computing processes in
publications.

3. The new language should be mechanically translatable into machine programs.

Besides the Swiss and Germans, also others such as the Dutch, Danes, and
British were actively involved in computing during the 1950s. In Amsterdam, for
instance, Van Wijngaarden led a team at the ‘Mathematisch Centrum’ (Mathe-
matical Center). Contrary to Rutishauser, who had a rented computing machine
at his disposal as early as 1950 [43, 44, p.24-25, p.41-50], the Amsterdammers
had to build their own machine before being able to experiment with program-
ming techniques. It took until January 1954, with the advent of their ARRAII
machine, for the Amsterdammers to possess a working computer [23, p.124].
And, only in 1959, with their X1 machine, did the Amsterdammers actively
participate in advancing the art of automatic translation; i.e., by joining the
ALGOL60 effort. Surprisingly however, the Amsterdammers Dijkstra and Zon-
neveld succeeded very quickly in building an ALGOL60 compiler (August, 1960).
By doing so, Amsterdam instantly became an internationally renown city for
those involved in the ALGOL60 effort [23, p.125].

During the second half of the 1950s, the Swiss-German ZMD group extended
and changed its name into ALCOR (ALgol COnverteR). Research teams from
Copenhagen and Vienna had for instance joined the ALCOR initiative [15, p.210].
Each ALCOR team had its own unique computing machine, but shared the same
aspiration: an easy mathematically-oriented programming language (initially
ALGOL58, later ALGOL60). Similar to the Gorn-Brown-Carr philosophy, the
ALCOR members wanted to be able to write a program once in ALGOL58 and
then be able to automatically translate it into the instructions of any ALCOR
machine. Furthermore, the ALCOR members wanted efficient translators and ef-
ficient machine programs [15, p.210]. The latter ambition, however, conflicted
with their quest for a universal machine-independent language. For, recall from

5Gesellschaft für Angewandte Mathematik und Mechanik (Association of Applied Mathe-
matics and Mechanics).

10

Brown and Carr’s work that efficient machine programs and machine indepen-
dence did not mix well, as Bauer and Samelson’s own words from 1962 also seem
to indicate:

The [ALCOR] group was in agreement from the beginning, partly as a result
of the experiment in machine design, to devise a [universal, machine inde-
pendent] language and translator as an efficient programming tool using
available machine facilities to the fullest extent possible. [15, p.210, my
italics]

As we shall see later, Dijkstra, by contrast, designed a language after having
first abstracted away from the machine. A similar remark holds concerning the
design of the Dijkstra-Zonneveld compiler.

2.3 The Recursive Procedure Enters ALGOL60
As part of the ALGOL60 effort, a subcommittee in November 1959 (consisting
of Rutishauser, Ehrling, Woodger, and Paul) recommended that certain restric-
tions be put in place with respect to the parameters of a procedure, thereby
automatically preventing recursive activation through a parameter. According
to Perlis, recursion in general was therefore not explicitly forbidden [42, p.86].
According to Naur, however, it was:

We should also mention that this procedure concept of the old language in-
troduced for every procedure body a completely closed universe of names.
There was no communication to the outer world except through param-
eters. In this way of course, recursive activations were ruled out by the
language itself. [4, p.151,154]

In August 1959, McCarthy wrote a letter in which he openly advocated for
recursive procedures [45], and, in January 1960, at the final ALGOL60 Paris con-
ference, McCarthy suggested to add recursive procedures to the ALGOL60 lan-
guage [42, 38, p.86, p.30]. With regards to McCarthy’s proposal to add recursive
procedures, an American representative to the ALGOL60 conference proposed to
add the delimiter recursive to the language, to be used in the context recur-
sive procedure. The American’s proposal was, by voting, turned down by a
narrow margin [4, p.112]. According to some, this rejection was interpreted to
mean that recursive procedures should not be added to the ALGOL60 language;
others, however, interpreted it to mean that recursive procedures should not be
distinguished syntactically from nonrecursive procedures by means of the pro-
posed delimiter [4, p.160]. The latter category of people, therefore, did assume
that recursive procedures (introduced by McCarthy) belonged to the ALGOL60
language, while the former category of people –including Naur and McCarthy [4,
p.159-160]– assumed that recursive procedures did not belong to the language.
In short, and in Perlis’s words: “it is not clear what the votes meant!” [4, p.160].

The voting took place before other issues, concerning the (informal) seman-
tics of procedures, had been clarified [4, p.160-161]. After the voting, and after
several modifications were made to the semantics of procedures, the defined

11

language, from Naur’s perspective, contradicted the November 1959 proposal
to prohibit recursion [4, p.112]. For, Van Wijngaarden and Dijkstra had stum-
bled upon the possibility to syntactically express recursive-procedure activa-
tions. Not sure whether recursion was indeed intended semantically, they con-
tacted the ALGOL editor, Naur, by telephone on approximately 10 February 1960
to convey this ambiguity [4, p.112]. After consulting Dijkstra, Van Wijngaarden
suggested to Naur to add the following clarification to the ALGOL report:

Any other occurrence of the procedure identifier within the procedure
body denotes activation of the procedure. [6, p.311]

Hence, this made explicitly clear that recursive procedures could be expressed
in ALGOL60. The fact that the alternative, of preventing recursive-procedure
activations by means of several language restrictions, would be cumbersome,
was also mentioned by Van Wijngaarden6. It is, in hindsight, clear that Van
Wijngaarden and Dijkstra were primarily reasoning along linguistic lines and
not in terms of specific machine features. As we shall see, simplicity for them
meant less language restrictions.

Naur had initially been in favor of ALCOR’s efficiency-driven philosophy. But
he became charmed by the one-sentence clarification of the Dutch and added it
to the ALGOL60 report. According to Naur’s 1978 recollections:

I got charmed with the boldness and simplicity of this [one-sentence] sug-
gestion and decided to follow it in spite of the risk of subsequent trouble
over the question (cf. Appendix 5, Bauer’s point 2.8 and the oral presen-
tation). [4, p.112-113]

Naur’s reference to Bauer shows that he was well aware of ALCOR’s strong will to
prohibit introducing recursive procedures in the language, in accordance with
the November 1959 meeting7.

3 Dijkstra’s Continual Appeal for Generalization
Van Wijngaarden’s team in Amsterdam spent most of the 1950s building com-
puting machines and corresponding machine languages. The programmer Dijk-
stra typically had to construct the machine’s software on paper, awaiting for
the machine to be built by his colleagues Loopstra, Scholten, and Blaauw [23,
p.111]. Only in 1959, did the Amsterdammers join the ALGOL60 effort by actively
pursuing a definition of the ALGOL60 language and a corresponding translation
technique. In hindsight, the Amsterdammers’ lack of expertise in translation
technology and machine-independent languages may have been a blessing in
disguise, as Dijkstra’s words from 1980 indicate:

6Cf. [4, p.112]. Today we know that it is almost impossible to write recursive grammar
rules preventing the use of recursion. This was, however, not obvious to many ALGOL60 actors
at the time.

7Further support for this claim, involving also Van Wijngaarden and Dijkstra, can be
found by reading Bauer’s remarks in [4, Appendix 5] and, in particular, Bauer’s words: “the
Amsterdam plot on introducing recursivity” [4, p.130].

12

The combination of no prior experience in compiler writing and a new
machine [the X1] without established ways of use greatly assisted us in
approaching the problem of implementing ALGOL60 with a fresh mind. [46,
p.572]

Van Wijngaarden and Dijkstra viewed a programming language, such as ALGOL60,
as a mathematical object. If certain aesthetic criteria were met, they would con-
sider the language to be elegant and, hence, relevant. Only after such a language
was defined, did they seek an automatic-translation technique. Their working
style differed radically from the efficiency-driven approach followed by Bauer,
Samelson, Strachey, Wilkes, and others.

3.1 In Search for a Simple Language
An important aesthetic criterion for the Dutch was generality: any unnecessary
language restriction had to be avoided at all costs, in the interest of obtaining
a simple language. Dijkstra clarified this point in a later publication [14] by
making an analogy between ALGOL60 and the English language. He suggested
considering any English text that respects five restrictions:

1. Words of more than 15 letters are forbidden.

2. The total number of letters of three consecutive words may not be greater than
40.

3. Sentences of more than 60 words are not allowed.

4. In one and the same sentence, the same word may not be used twice as a subject.

5. A list of 2000 words is given and each word in that list may not be used.

Dijkstra remarked that the readability of any text respecting restrictions 1-5 is
not necessarily hindered and one can read such a text while being completely
ignorant of the restrictions. But, constructing a correct English text in con-
formance with restrictions 1-5 is problematic, due to a lack of intuition when
trying to comprehend the restrictions. In the interest of clarity and program
correctness, Dijkstra did not want a language such as ALGOL60 to contain re-
strictions similar to 1-5 either. For instance, a procedure that can call another
procedure but not itself was an unnecessary language restriction for Dijkstra.
By discarding it, a more general and hence simpler language was obtained; i.e.,
a language which could handle recursive procedures.

In his paper [14], Dijkstra applied his ideology to ALGOL60 by advocating
for dynamic instead of static constructions, since they make the language more
systematic and powerful. One of Dijkstra’s examples was based on the procedure
and switch declarations in ALGOL60. The switch is a vector of statement labels,
declared at the beginning of a block. Its declaration looks syntactically like
an assignment statement. Both the procedure and switch declaration have a
hybrid nature; i.e., an undesirable property according to Dijkstra. On the one
hand, the procedure and switch declarations both reserve an identifier for a

13

special sort of object and that object is defined statically; i.e., immediately.
In this sense, both the procedure and switch declarations are similar to the
‘constant’ declaration. On the other hand, however, while a constant number
can be used in an assignment statement which dynamically assigns a value, a
procedure or switch declaration can not be used in such a dynamic manner.
Dijkstra therefore suggested to extend the concept of ‘assignment of a value’
so that lists, statements, etc. can also act as assigned values. This, in turn,
would allow one to remove the value-defining function of the procedure and
switch declarations. The result would then be that the declarators procedure
and switch would only be followed by a list of identifiers, to which suitable
assignments would eventually be made at run time [14, p.35-36]. According to
Dijkstra:

[Such a modification] is an improvement: the language then becomes more
systematic and more powerful at the same time, as all value-relations have
now become dynamic. [14, p.36, my italics]

Dijkstra’s emphasis on general language constructs and corresponding dynamic
implementations would, as many observed, have a negative effect on computa-
tion time. In Strachey’s words:

I think the question of simplifying or reducing a language in order to
make the object program more efficient is extremely important. I disagree
fundamentally with Dijkstra, about the necessity of having everything as
general as possible in all possible occasions as I think that this is a purely
theoretical approach [. . .]8

It is therefore no surprise that Dijkstra and his fellow linguists were the laugh-
ing stock of Seegmüller’s well-received comment at the 1962 Rome symposium.
Indeed, for most people at the symposium efficiency was the prime concern.

A closer look at Dijkstra’s ideology, however, shows that his agenda was not
to neglect efficiency issues per se, but to focus on the more general objective of
increasing programming comfort. In Dijkstra’s words:

In order to get as clear a picture as possible of the real needs of the pro-
grammer, I intend to pay, for a while, no attention to the well-known
criteria ‘space and time’. Those who on the ground of this remark now
doubt the honest fervour with which the following is written, should re-
member that, in the last instance, a machine serves one of its highest
purposes when its activities significantly contribute to our comfort . [14,
p.30, my italics]

In other words, to better understand the real underlying problems of program-
ming, Dijkstra suggested to temporarily ignore (i.e., abstract away) machine-
specific features. While a decrease in execution time or memory footprint may,
indeed, contribute to an increase in programming comfort, other criteria, such
as program correctness, could contribute much more. According to Dijkstra:

8Cited from [2, p.368]. Incidentally, it is interesting to note that Strachey used the verb
‘simplifying’ to denote the opposite action of what Dijkstra associated with that verb.

14

I am convinced that these problems [of program correctness] will prove
to be much more urgent than, for example, the exhaustive exploitation
of specific machine features, if not now, then at any rate in the near
future. [14, p.30]

As a final example, by countering Strachey and Wilkes’s efficiency-driven pro-
posal to explicitly delimit the use of recursive procedures, Dijkstra clearly ex-
plained where he stood on these matters:

[Strachey and Wilkes] make an appeal to the fact that “. . . a recursive
procedure is both longer and slower than a non-recursive one.” But the
recursive procedure is such a neat and elegant concept that I can hardly
imagine that it will not have a marked influence on the design of new
machines in the near future. And this influence could quite easily be so
considerable, that the possible gain in efficiency that can still be booked
by excluding recursiveness, will become negligible. [13, 14, p.17, p.41]

To clarify, Strachey and Wilkes were in favor of static solutions enforced by lan-
guage restrictions in the interest of machine efficiency. They viewed the require-
ment that all ALGOL60 procedures could potentially be recursive as an example
of “unnecessary generality” [13, 14, p.16, p.40]. Instead, they wanted all proce-
dures to be nonrecursive by default and only recursive if explicitly delimited by
the programmer. By doing so, it would be possible to write compilers that could
generate far more efficient machine code. Dijkstra, by contrast, wanted to avoid
such case distinctions in order to obtain a simple language and corresponding
implementation technique. To do so, he advocated for general language con-
structs and corresponding dynamic solutions. Dijkstra acknowledged that his
general recursive-programming approach led to inefficient machine code, but
he also stressed that this would probably be resolved in the nearby future (cf.
[14, p.41] and his abstract in [19]). In hindsight, it seems that Dijkstra had
anticipated the advent of the hardware stack.

To conclude, Dijkstra’s philosophy is in many ways similar to the Gorn-
Brown-Carr philosophy of 1954. And, his appeal for dynamic constructs is,
albeit for different reasons, similar to the work of Newell, Shaw, and Simon.
Furthermore, Dijkstra believed that efficiency problems would be resolved in
the nearby future, or at least become negligible. According to Dijkstra, gen-
eralization of a programming language allowed for simplification in compiler
building and this would in the long term prevail over the short-term engineering
problems that concerned people such as Bauer, Samelson, Strachey, and Wilkes.

3.2 Generalizations of the Stack Principle
Dijkstra’s urge to generalize was not only felt at the level of language defini-
tion. Also when designing the Dijkstra-Zonneveld compiler did he seek general
principles. For example, Dijkstra generalized the manner in which a stack was
used in two essential ways. First, he showed how the functionality of the stack
can be further generalized in time, by not only using it to evaluate arithmetic

15

A

A
P

A
P
Q

A
B

B is ready made

B is computed as P/Q

Figure 1: Generalizing the functionality of the stack.

expressions, but also expressions containing procedure calls. That is, procedures
were treated like arithmetic expressions by means of some additional bookkeep-
ing [19]. Second, he showed how several different kinds of items (operators,
operands, states, priorities, etc.) can be stored on one general stack, instead of
using multiple specialized stacks for each kind of item [48].

3.2.1 Further Generalization in Time

By the late 1950s, the stack had been invented over and over again by several
independent researchers9. It was the “stack principle” of Bauer and Samel-
son [50] which Dijkstra referred to in his now-famous 1960 article [19], in which
he elaborated on how to use the stack as a run-time object.

Figure 1 helps to illustrate the concepts underlying Dijkstra’s generalization.
The top-most horizontal arrow shows how B is placed on the stack, assuming
that B is ready made. If, however, B is not ready made but, instead, has to
be calculated by means of the formula B = P/Q, then the alternative sequence
of arrows in the figure is applicable: P and Q are placed on the stack and
eventually removed from the stack in order to compute P/Q.

The generalization lies in the fact that a stack can be used for both scenarios:
whether B is ready made or has to be computed, by temporarily using a number
of next stack locations, the net result remains the same. More generally, and
not explicitly shown in Figure 1, B may just as well be computed by means of
a call to a procedure which contains the expression P/Q. In Dijkstra’s words:

[I]t is immaterial to the ‘surroundings’ in which the value B is used,
whether the value B can be found ready-made in the memory, or whether
it is necessary to make temporary use of a number of the next stack lo-
cations for its evaluation. When a function occurs instead of B and this
function is to be evaluated by means of a subroutine, the above [illustra-
tion] provides a strong argument for arranging the subroutine in such a
way that it operates in the first free places of the stack, in just the same
way as a compound term written out in full. [19, p.314]

9See Chapter 2 in [49].

16

To arrange the procedure in such a way that it operates in the first free places
of the stack, Dijkstra subsequently, in his paper, explained how one run-time
stack could do the job10. As a by-product of Dijkstra’s generalization, recursive-
procedure activations became feasible:

The subroutine only has to appear in the memory once, but it may then
have more than one simultaneous ‘incarnation’ from a dynamic point of
view: the ‘inner-most’ activation causes the same piece of text to work
in a higher part of the stack. Thus the subroutine has developed into a
defining element that can be used completely recursively. [19, p.317]

Dijkstra’s generalized stack was able to store parameters and local variables
of activated procedures. And, to make these elements accessible, Dijkstra had
devised a mechanism to delve deep down in his stack, a mechanism which was
not needed for the evaluation of simple arithmetic expressions.

Dijkstra was not the first implementor of recursive activations11. The rela-
tively simple recursive mechanisms of the list-processing languages IPL and LISP
had already been implemented by means of a stack [39, p.192-193]. Rutishauser,
in his 1963 paper [5, p.50], not only credited Dijkstra as the inventor of a tech-
nique to implement recursion for ALGOL60, but also the Americans Sattley and
Ingerman (cf. [53]), who had worked closely with Floyd, Irons, and Feurzeig (see
e.g. [54]). Furthermore, Turing had, by 1945, already thought through the idea
of using a stack for recursive activations but had not implemented it12. Bauer
has confirmed Turing’s contributions and has also mentioned Rutishauser13,
Van der Poel, and Huskey as researchers who had implemented recursion prior
to 1960 [57, 58, -,p.39].

It is Dijkstra’s generalizing style which stands out when a comparison is
made with the work of his contemporaries. Rutishauser, for example, had lim-
ited the order of his procedure activations in his run-time system [59], while
Dijkstra had no such restriction. Floyd’s work [60, p.42-43] relied on three spe-
cialized “yo-yo” lists (i.e., stacks) instead of one general stack. Likewise, the
MAD translator [61, p.28] used several specialized tables. Also, and most im-
portantly, the ALCOR compilers were severely restricted in that they could not
handle several ALGOL60 language constructs, including the recursive procedure
(cf. Section 3.4). Finally, though the Irons-Feurzeig system [54] did implement
recursive-procedure activations and by means of one general run-time stack, it
was, in the interest of efficiency, sophisticated in its run-time capabilities and,
hence, unlike the run-time system of Dijkstra and Zonneveld (cf. Section 4.2).

10Dijkstra emphasized that one universal stack was sufficient to implement ALGOL60 [63,
p.344].

11Contrary to what is suggested in [51, p.5] and [52, p.96].
12See [55] and [56, p.188, 237].
13Rutishauser, himself, mentioned in his 1963 paper [5, p.50] that he had implemented

recursive subroutines for the ERMETH in the “pre-ALGOL days”.

17

3.2.2 Further Generalization in Space

To further illustrate Dijkstra’s appeal for generalization, I summarize the es-
sential ideas [62] underlying the paper [48] he presented in Rome 1962. In his
paper, Dijkstra described, what he called, the condensation of his meditations
after having implemented ALGOL60. He presented a language of a stack-based
machine which was “of a perverse inefficiency” [62, p.1]. For, again, Dijkstra’s
main objective was to pursue “extreme simplicity and elegance” [62, p.1], by de-
vising a uniform way in which his machine could perform different operations.
Some examples from his paper are presented below.

Consider the program

5 + 39 / (7 + 2 ∗ 3) − 6 ;

Its corresponding postfix notation is

5 39 7 2 3 ∗ + / + 6 −

which is read from left to right by the stack-based machine in the following
manner. When it encounters a number, it is copied to the top of the stack.
When it encounters an operator, the corresponding operation is performed at
the top of the stack.

Dijkstra remarked that the function of an operator is, thus, a double one. On
the one hand, it indicates that copying words to the stack has to be interrupted.
On the other hand, it also specifies the operation that has to be performed at
the top of the stack. Dijkstra suggested to separate these two functions, by
treating arithmetic operators in the same way as numbers: the operator should
also be copied onto the stack, and its evaluation should be performed by a new
and separate word E (for Evaluate). In accordance with these new conventions,
the postfix notation would then be

5 39 7 2 3 ∗ E + E / E + E 6 − E

Whenever the word read is unequal to E, the word is copied onto the stack.
Whenever the word read is equal to E, it is not copied; instead, the operation
on the top of the stack is performed. As the reader can check, such an execution
would finally result in the number 2 being the top element of the stack, as
desired.

Further on in his paper, Dijkstra introduced variables which could be placed
on the stack as well. For instance, the expression

x + 4 ;

corresponds to the post-fix notation

x E 4 + E

Upon execution, x would first be placed on top of the stack. After encountering
the first occurrence of E, the variable x would be substituted by the value
it denotes, which depends on the state of the process at that moment. For
example, the top element of the stack, x, could be substituted by 3, implying

18

that the final result would be a stack with as top element the value 7. In short,
Dijkstra treated variables as operators and, as explained previously, he treated
operators as numbers.

Dijkstra’s further generalization was led by the observation that a number
is only a special kind of expression. That is, while in the previous examples
the final addition to the stack was merely a number, it should, more generally,
be possible to devise examples in which the final result is a general expression.
To achieve this generalization, Dijkstra allowed the word E to be placed on the
stack as well by introducing a new word P (for Postponement). Upon evalu-
ation of P , it would be replaced by the word E. As an example, consider the
following text with three variables x, y, and plinus:

x P E y P E plinus E P E

Upon execution, the top of the stack would show in succession

. . . x

. . . x P

. . . x E

. . . x E y

. . . x E y P

. . . x E y E

. . . x E y E plinus

. . . x E y E +

. . . x E y E + P

. . . x E y E + E

The last line in the previous illustration contains the string of words which,
when read as a piece of program, would effectuate the evaluation of the expres-
sion x + y. Likewise, if the value of the variable plinus had been −, then the
resulting string of words would have corresponded to the expression x − y. In
other words, the net effect of the previous illustration is that the expression x
plinus y has been partially evaluated with as result another expression.

Dijkstra continued in his paper by showing that the distinction between num-
bers and instructions was superfluous as well. His generalizations furthermore
led him to introduce a second stack, which he called the stack of activations. In
his words:

We could try to merge our two stacks into one. This merging would
present itself in a completely natural fashion if the two should expand
and shrink “in phase” with one another. In general, however, this is not
the case and trying to merge the two stacks into a single one would give
a highly unnatural construction. [48, p.247]

In summary, while Dijkstra had only needed one stack to implement ALGOL60,
he needed two stacks to implement his more general stack-based programming
language. In both cases it was his quest to generalize which stands out.

19

3.3 Machine-Independent Object Language
Dijkstra’s single most important ALGOL60-related contribution, in terms of gen-
eralization, is without doubt his design of an intermediate machine-independent
object language14. That is, a language which serves the purpose of describ-
ing the behavior of a general stack-based machine and not the X1 machine in
particular. Dijkstra situated this language in between ALGOL60 and the ma-
chine instructions of the X1, and thereby created –what we would today call–
a separation of concerns, which heavily simplified the implementation of the
Dijkstra-Zonneveld compiler.

The separation of concerns is twofold: a translation stage followed by an
interpretation stage. The translation, from ALGOL60 to the object language, is
accomplished in a machine-independent manner and, hence, without any appeal
to machine efficiency. Candidates for this translation stage are jobs that can
be done once and for all; i.e., jobs that are independent of the execution of
the program and, hence, intrinsically static. An example is determining which
brackets in an ALGOL60 program form pairs [47, p.349]. In the second stage, the
obtained object program is processed by an interpreter written in the machine
code of the X1. Only at this stage does dynamic physical memory management
come into play. An important example is mapping the run-time software stack
onto X1’s memory [63, p.336].

It is, again, Dijkstra’s top-down perspective, from ALGOL60 to the machine,
which stands out in comparison to the machine-specific approaches of Bauer,
Samelson, and others15. In Dijkstra’s own words:

[W]e are completely free to determine how the computer should be used,
this in contrast with machines for which considerations of efficiency force
us in practice to a special manner of use, that is, force us to take account
of specific properties and peculiarities of the machine. [63, p.330]

[T]he making of an ALGOL translator is a relatively simple job if the trans-
lator may formulate the object program in operations cut out for the
problem. [63, p.344]

To design his object language, Dijkstra had made several abstractions. For
instance, he had assumed the presence of a sufficiently large homogeneous store,
and had thereby abstracted away from X1’s heterogeneous memory; i.e., the
presence of a fast, small store and a slow, large store. Likewise, he had assumed
X1’s arithmetic unit to be extremely fast, thereby allowing him to extensively
use subroutines without being concerned with computation time [63, p.330].

Similar to Brown and Carr in 1954 and as mentioned before, Dijkstra was
fully aware of the prolonged-computation times introduced by his abstractions.

14Today we could view Dijkstra’s work as a precursor to the Java Virtual Machine.
15See e.g. [15, p.210] and [18, 16]. Also, the account of Randell and Russel [64, p.3] indicates

that Dijkstra’s machine-independent object language was unconventional at that time. How-
ever, once again, I stress that no claim is made in this paper that Dijkstra was the first person
to introduce a machine-independent object language. Other people had come up with similar
ideas independently –see e.g. the remarks of Galler and Gallie in [65, p.528] and McCarthy’s
work on LISP in particular [22].

20

Moreover, he acknowledged the short-term limitations of his solution:

We are fully aware of [. . .] a certain prolongation of the calculating time,
and we can imagine that for some computer which is still in use today one
cannot accept this delay. There are twofold reasons why we nevertheless
made this choice, one of principle and one practical [. . .] [63, p.330]

3.4 Reception of Dijkstra
Dijkstra and Zonneveld succeeded very quickly in building an ALGOL60 compiler.
Their success did not go unnoticed, as the British researcher Randell recollects:

[One] week of discussions with Dijkstra were spent [. . .] These discussions
we documented in a lengthy report [64] [. . .]. For the next few years Dijk-
stra used our report to defend himself from the numerous further requests
he was getting from people who wanted to visit him and find out about
the X1 compiler. [66, p.3]

Dijkstra’s generalizing style had clearly influenced subsequent practical devel-
opments in compiler technology during the 1960s –as explicitly confirmed by
Naur [67, p.105]. By breaking away from the efficiency regime, Dijkstra and
Zonneveld had succeeded in building a general and fast ALGOL60 translator for
a relatively small computer, the X1.

Contrary to the Amsterdam team, several ALCOR members already had func-
tional translation technology available before the recursive procedure entered the
ALGOL60 definition (cf. telephone call between Van Wijngaarden and Naur) [4,
15, p.129, p.210]. In the interest of machine efficiency, ALCOR had decided to
minimize their run-time system as much as possible by following a strict static
approach: each procedure was allocated a fixed working space prior to program
execution. This meant that procedures could not be activated more than once
during program execution and, hence, that recursive-procedure activations, in
particular, were ruled out. At the 1962 Rome symposium, however, Bauer and
Samelson expressed their regret in choosing a static solution:

[I]t was decided, to assign static data storage to each procedure sepa-
rately within the block containing the procedure, which of course rules
out recursive procedures. The waste of static storage, in conflict with our
original cellar [i.e., stack] principle, was considered regrettable. [15, p.214,
my italics]

These words are ironic because ALCOR was a strong proponent of practical
engineering-based solutions. Some ALCOR members, such as Seegmüller, had
openly distanced themselves from Dijkstra, Van Wijngaarden, and Naur who
did not seem to care much about machine efficiency, but, instead, strove for a
general algorithmic language. The irony, thus, lies in the fact that ALCOR’s ap-
proach had failed, even though they had restricted the use of the programming
language, while Dijkstra, for instance, had not.

21

Naur’s team in Copenhagen had initially joined ALCOR and, hence, had fol-
lowed an efficiency-driven philosophy as well [18, p.118]. And, even after hav-
ing started a close collaboration with the Amsterdam team in March 1960, the
Danes remained reluctant in subscribing to the Amsterdam approach. In Naur’s
words:

[In March 1960, t]he Dutch group impressed us greatly by their very gen-
eral approach. However, although they were prepared to put their solution
of the problem of recursive procedures at our disposal we decided to stick
to the more modest approach which we had already developed to some
extent. The reasons for this reluctance were practical. [...A]t the time
we feared the loss of running speed of a system which included recur-
sive procedures (a fear we now know was unfounded). [18, p.118-119, my
italics]

Hence, the Danes were initially not able to handle recursive procedures. And,
in line with ALCOR’s doctrine, they had chosen static solutions [16, p.441]. Fur-
thermore, the Danes had explicitly allowed information transfers between core
store and drum to be expressed in their ALGOL60 programs [16, p.441]. Such
machine-specific programming was in sharp contrast to the Dijkstra-Zonneveld
approach and was very similar to the work of Strachey and Wilkes [12, p.491]
and Backus’s Speedcoding (cf. Section 2).

In their later 1962 GIER compiler, however, the Danes did follow “the Ams-
terdam school” and, therefore, were able to handle recursive procedures16. The
ALCOR group would need some more years before, they too, would finally adopt
the Amsterdam approach, as exemplified by the the compiler described in [70].

4 The Dichotomy Outlived the ALGOL60 Effort
As a successful ALGOL60 compiler writer, Dijkstra was invited to give a key-
note address in Munich (autumn 1962). In his presentation, he made a sharp
contrast between reliability and optimization and, unsurprisingly, championed
the former. In his words:

In deciding between reliability of the translation process on the one hand,
and the production of an efficient object program on the other hand, the
choice often has been decided in favour of the latter. But I have the
impression that the pendulum is now swinging backwards. [71, p.537]

Subsequently, Dijkstra mentioned that there are two ways one can use a new
and more powerful computer. The classical reaction, he said, is to use the new
machine as efficiently as possible. The alternative, however, is to recognize that
the new machine is indeed faster and that, hence, time does not matter so much
any more. That is, the cost per operation in the new machine is less than in the
old machine. Hence, it becomes more realistic to invest some of the machine’s

16See [18, 68, p.118, 120-124, p.94]. Also Samelson described the Amsterdam and ALCOR

approaches as two different “schools of thought” [69, p.490].

22

speed in other things than sheer production, such as programming comfort,
elegance, and reliability [71, p.537].

Dijkstra viewed optimizations, on the one hand, and reliability and trust-
worthiness, on the other hand, as opposing goals. He described optimizing as
“taking advantage of a special situation” (cf. specialization). And, according
to him, the construction of an optimizing compiler is “nasty”, in comparison to
“straightforward but reliable and trustworthy” compiler technology [71, p.538].

Afterwards, Dijkstra described ALGOL60 as a “great promotor of non-opti-
mizing translators”, a remark which I shall return to shortly, when discussing
the Irons-Feurzeig system. Dijkstra continued by contrasting the Dijkstra-Zon-
neveld compiler to the many other compilers which were based on language
restrictions:

The fact is that the language, as it stands, is certainly not an open in-
vitation for optimization efforts. For those who thought that they knew
how to write optimizing translators –be it for less flexible languages– this
has been one of the reasons for rejecting ALGOL60 as a serious tool. In my
opinion these people bet on the wrong horse. [71, p.538]

The last sentence misleadingly suggests that the dichotomy between specializa-
tion and generalization was equally obvious to other researchers, as it presum-
ably was to Dijkstra himself in 1959 and 1960. On the other hand, however, the
dichotomy did indeed become more apparent after 1960, as is illustrated by the
comments of Galler [72, p.525], Gallie [73], and Randell’s 1964 recollections17.

4.1 Twin Approach
While the Dijkstra-Zonneveld compiler was closely mimicked by Randell and his
colleagues in Leicester, it is equally important to note that the British did not
follow Dijkstra all the way. For, in later years, the Leicester team had two fully
functional ALGOL60 compilers at their disposal: the Whetstone compiler and the
Kidsgrove compiler. While the former closely resembled the Dijkstra-Zonneveld
compiler and was, therefore, fast in translating ALGOL60 programs but poor in
generating fast programs, the latter compiler showed little resemblance with the
Dijkstra-Zonneveld compiler and was a slow compiler that produced very fast
programs. The practical approach taken by the Leicester team was twofold. A
new ALGOL60 program was first quickly compiled by the Whetstone compiler
and tested. And, after the programmer became convinced of the correctness of
his program, he would subsequently use the Kidsgrove compiler to re-compile
his ALGOL60 program in order to obtain fast machine code. The Leicester team
had thus come up with a “twin approach” in which Dijkstra’s philosophy was

17Cf. [74, p.2]. See also Samelson’s 1978 recollections in which he contrasts between “lib-
eralists” such as Naur and “restrictionists” such as himself, and states that: “[U]nification
burdens the normal case [in terms of machine efficiency] with the problems arising from the
exceptional case” [4, p.132-133]. But, as Naur correctly points out [4, p.136], this partitioning
of the ALGOL60 community into two opposing groups only took place in the years following
the publication of the ALGOL60 report. See, in particular, the opposing views expressed at the
Rome 1962 conference.

23

embodied in one compiler and the efficiency regime was embodied in the other
compiler18. Hence, in a very practical sense, the dichotomy outlived the ALGOL60
effort, thereby partly contradicting Dijkstra’s key-note address in Munich 1962.

4.2 Run-Time Optimizations
Though Dijkstra viewed ALGOL60 as a “great promotor of non-optimizing trans-
lators”, it is interesting to note that, in the same year in which Dijkstra’s paper
on recursion [19] was published, Irons and Feurzeig had also come up with an
implementation technique for recursive procedures [54]. Unlike Dijkstra’s ap-
proach, however, the Irons-Feurzeig system applied run-time optimizations.

By means of some additional book-keeping, the Irons-Feurzeig system de-
tected, at run time, whether the procedure under investigation was involved in
recursion or not. That is, the system specialized at run time by distinguishing
between recursive- and nonrecursive-procedure activations, and treating each
kind of activation separately. As a result, only the truly recursive procedures
were slowed down and taxed in terms of storage allocation; while in the Dijk-
stra-Zonneveld compiler, all procedures were treated conservatively19.

Irons and Feurzeig’s run-time specialization was implemented by using sev-
eral case distinctions20. Hence, from Dijkstra’s point of view, the Irons-Feurzeig
system was sophisticated. From an efficiency-driven perspective, however, the
system was outstanding in that it not only provided fast ALGOL60 programs, but
it also did so without having to restrict the ALGOL60 language.

In retrospect, then, the dichotomy between specialization and generalization
does not hold in the case of the Irons-Feurzeig system. For, that system ap-
plied run-time specializations and handled general language constructs, such as
the recursive procedure. The essence of the system is that optimizations were
performed at run time, rather than enforcing language restrictions in adherence
with the ALCOR doctrine. Nevertheless, part of Dijkstra’s key-note address in
Munich 1962 remains valid in that the run-time efficiency pursued by Irons and
Feurzeig still opposed the simplicity Dijkstra wanted in the interest of correct-
ness and reliability.

18Cf. [11, p.34]. Also Rutishauser, in 1962, had expressed the desire for such an approach [65,
p.527].

19In the Dijkstra-Zonneveld implementation, no detection was made to check whether an
activated procedure P was recursive or not. Therefore, whenever P was to call another
procedure Q, the conservative assumption had to be made that P was recursive and, hence,
would be called again later. As a result, all the local variables and arrays of P had to be
placed on the software stack prior to calling Q such that they could retain a unique identity
for the special recursive case that the procedure were to be called again. In the Irons-Feurzeig
system, such expensive stack management was only carried out after it was determined that
P would be called more than once.

20For instance, Irons and Feurzeig used several specialized thunks, explained in [75, p.57].

24

5 Final Remarks
Several researchers have written about the history of computing (e.g., [76, 77, 78,
56, 79, 80]) and, in particular, about the history of programming languages (e.g.,
[81, 43, 82, 29, 20, 83]). Also, an increasing number of students are interested
in past developments (e.g., [52, 84, 35, 49]). Nevertheless, in accordance with
Mahoney’s words, I believe more research is needed:

[Historians] remain largely ignorant about the origins and development of
the dynamic processes running on [computers], the processes that deter-
mine what we do with computers and how we think about what we do.
The histories of computing will involve many aspects, but primarily they
will be histories of software. [79, p.127]

The recursive procedure is an example par excellence of such a dynamic process.
To the best of my knowledge, it has not been treated technically in any previous
historical account. Nor has the history of software been written by contrasting
Dijkstra’s views with those of his contemporaries, as I have attempted in this
paper.

Future Work
Research contributions of Gödel, Carnap, Turing, and Tarski have been studied
and documented over and over again by logicians and philosophers themselves.
Computer scientists, by contrast, have yet to commence with similar work con-
cerning the ideas of their fathers: Dijkstra, McCarthy, Hoare, and others. This,
in turn, explains my motivation to write this paper.

More historical accounts, written by other researchers, are however needed
in order to obtain a more objective understanding of Dijkstra’s contributions.
Based on an earlier draft of this paper, I have already received the comment that
Dijkstra’s ideas on programming-language design, elaborated on in Section 3.1,
were only meant for theoretical purposes and that I have thus misinterpreted
Dijkstra to some extent by connecting his abstract thoughts with his practical
work. A similar remark has been made concerning Dijkstra’s abstract machine,
explained in Section 3.2.2.

Based on my understanding of Dijkstra as a man who did not want to distin-
guish between theory and practice, as a man who practiced what he preached,
I believe the two aforementioned remarks are ill-founded. The remarks remind
me of Seegmüller’s and Strachey’s criticism to Dijkstra, claiming that the lat-
ter’s work was purely theoretical. Not so! Dijkstra’s abstract ideas clearly sidle
through his applications. For example, Dijkstra’s temporary abstraction of ef-
ficiency, while discussing the quality of a programming language [13, 14, p.10,
p.35], is directly reflected in the two-stage design of the Dijkstra-Zonneveld com-
piler. Likewise, his thoughts on abstract-machine languages is clearly related to
the stack-based object language which he introduced to simplify the translation
of ALGOL60. Finally, Dijkstra used one universal stack to implement ALGOL60
while many of his contemporaries used multiple specialized stacks, and he used

25

two stacks in his later work presented in Rome 1962. Is it a coincidence that
most 1st generation stack machines, which were designed to execute ALGOL-like
languages, only had a single stack [49, p.36], and that 2nd generation stack
computers separated evaluation and control flow by means of two stacks [49,
p.10]? Though more research is needed concerning these two questions, I would
not be surprised if Dijkstra’s abstract thoughts, again, had a direct bearing on
such practical matters.

Several other questions concerning Dijkstra’s career have yet to be investi-
gated. To give one detailed example, and as suggested recently in [85], Dijkstra
may have become acquainted with Turing’s work on ‘Reversion Storage’ (i.e.,
Turing’s stack principle) via Huskey who had visited Van Wijngaarden and
Dijkstra in Amsterdam in the summer of 1959. In fact, at the end of his 1960
paper [19], Dijkstra explicitly thanked Huskey for the inspiring conversations
that he had had with him in Amsterdam. Twenty years later, however, Dijk-
stra’s recollections were quite the opposite:

Harry D. Huskey had just spent a few sabbatical months at the Mathe-
matical Center, working on an algebraic compiler, but his style of work
differed so radically from mine that, personally, I could not even use his
work as a source of inspiration; the somewhat painful discussion with my
boss [i.e., Van Wijngaarden], when I had to transmit to him that disap-
pointing message, is remembered as one of the rare occasions at which I
banged with my fist on the table. [46, p.572]

More research is thus needed to understand how Huskey did or did not influence
Dijkstra in implementing ALGOL60. But it is important to stress that, during
the 1950s, the USA was technologically advanced compared to the Netherlands
(cf. Section 2). The American Huskey may well have played an important role
in terms of technology transfer by visiting Amsterdam in 1959.

On the one hand, Huskey’s style seems to have been very much at odds with
Dijkstra’s quest to generalize, as follows from Huskey’s negative comments on
general language constructs in [2, p.379-380] and his various specialized lists
in [86, 87]. In retrospect then, the previous quote may not be so surprising after
all21.

On the other hand, however, Keese and Huskey’s 1962 compiler technique [89]
is very similar to that of Dijkstra and Zonneveld. It has an intermediate
machine-independent object language, and dynamic storage assignment and re-
cursive procedures are processed by the assembler. Had Huskey learned these
techniques from Dijkstra or vice versa? As the historian Mahoney has noted,
“even when we can’t know the answers, it is important to see the questions.
They too form part of our understanding. If you cannot answer them now, you
can alert future historians to them” [90, p.832].

Finally, it should be remarked that, due to focusing on Dijkstra and ALGOL60,
several important researchers have not been mentioned in this paper. Examples

21In this respect, see also Knuth’s comments on Dijkstra’s “strong sense of aesthetics” and
that Dijkstra “didn’t want to compromise his notions of beauty” [88, p.41].

26

are Zuse, Hopper, Laning, and Zierler. Likewise, concerning nationalities, also
French (e.g. Vauquois), Norwegian (e.g. Garwick) and British (e.g. Woodger)
researchers actively participated in defining ALGOL60. And, other important
topics, such as syntax-directed compilation, have only been mentioned in passing
and deserve more attention in future work.

Conclusions
Two messages lie at the heart of this paper: (i) the early history of programming
languages, and the ALGOL60 effort in particular, can be perceived as a dichotomy
between specialization and generalization, and (ii) Dijkstra’s continual appeal
for generalization led to practical breakthroughs in compiler technology. Spe-
cialization, as promoted by Bauer, Samelson, Strachey, and Wilkes, refers to
language restrictions, static solutions, and the exploitation of machine-specific
facilities —in the interest of efficiency. Generalization, as promoted by Van
Wijngaarden and Dijkstra, refers to general language constructs, dynamic solu-
tions, and machine-independent language design —in the interest of correctness
and reliability.

In Western Europe, Van Wijngaarden and Dijkstra seem to have been rather
the exception than the rule in reasoning linguistically. Dijkstra in 1961 de-
voted an entire report [13] in countering the language restrictions that Strachey,
Wilkes, and others had proposed in the interest of machine efficiency. Here the
battle between generalists and specialists is vividly illustrated in Dijkstra’s own
words. Likewise, the panel discussion [2] at the Rome 1962 conference shows
the tensions underlying the dichotomy.

Dijkstra’s simple solutions, due to his generalizing style, stand out in com-
parison to the work of his contemporaries and it is this what made the Dijk-
stra-Zonneveld compiler shine. Furthermore, it was his quest to unify which
led him, together with Van Wijngaarden, to promote the recursive procedure in
the first place, and to find a corresponding implementation technique. For, just
like many of his contemporaries, he did not see any real necessity in using the
recursive procedure to solve practical programming problems. In his own words
in 1962:

One of our great features of our compiler is that it happens to turn out
that it is very easy to have a good recursive function in it. I am very
fond of them. They are hardly used by customers. Nevertheless, it is very
important that they are in. The reason is that they give us possibilities
that make the tool inspiring. [2, p.368]

In practical computations these [general] features are not too frequently
used, but the bare fact that the programmers could use them if they
wanted to made the language very appealing. [91, p.127]

Though Dijkstra had succeeded, together with Zonneveld, in implementing
ALGOL60 with recursive procedures, many participants at the Rome 1962 sym-
posium remained very sceptical about Dijkstra’s emphasis on general language
constructs and corresponding dynamic implementation techniques. For, they

27

had, as many observed, a negative effect on computation time. Not surprisingly
then, Dijkstra was perceived as someone who totally neglected efficiency issues,
while most people at the symposium considered efficiency to be of prime impor-
tance. It seems, however, that Dijkstra was anticipating some of the enormous
advances that would soon follow in electronic technology.

Contrary to the Amsterdam team, the ALCOR group already had a lot of
technical experience with ALGOL58 when the international community turned
towards defining the ALGOL60 language in 1959 and 1960. Led by an efficiency-
driven philosophy, they eschewed the recursive procedure and other dynamic
language constructs. Van Wijngaarden and Dijkstra, on the other hand, were
in search of a general language. They were led more by language aesthetics
than by practical limitations of actual computing machines. And, again, only
as a result of such a philosophy, did they become proponents of the recursive
procedure.

Dijkstra’s appeal for generalization resulted in practical breakthroughs in
compiler technology, with British, Danes, West-Germans, and others copying
parts of his unifying work and, in particular, his run-time system and top-
down compiler-design approach. Such immense success and recognition led Dijk-
stra to present his rather bold views on compiler technology in his key-note
address in Munich 1962. Clearly aware of a dichotomy between specialization
and generalization, he championed the latter and viewed ALGOL60 as a “great
promotor of non-optimizing translators”. However, as the work of Randell,
Irons, Feurzeig, and others illustrate, Dijkstra’s generalizing style, while indeed
influential, did not override the efficiency regime. In fact, in a very practical
sense, the dichotomy outlived the ALGOL60 effort.

Acknowledgements

Many thanks go to Gerard Alberts, David Nofre, Raphael Poss, and the anony-
mous referees for discussing previous versions of this paper.

References
[1] Lee, J.A.N. (1996) “Those Who Forget the Lessons of History Are Doomed

To Repeat It” or, Why I Study the History of Computing. IEEE Annals of
the History of Computing, 18:2, 54-62.

[2] (1962) Proc. of the International Symposium of Symbolic Languages in
Data Processing. Rome, 26-31 March, pp. 363-381. Gordon and Breach
Science Publishers, New York and London.

[3] Bauer, F.L. and Samelson, K. (1959) The problem of a common language,
especially for scientific numeral work (motives, restrictions, aims and results
of the Zurich Conference on ALGOL). IFIP, Paris, 120-125. UNESCO,
Paris.

28

[4] Naur, P. (1981) The European side of the last phase of the development of
ALGOL60. Wexelblat, R.L. (ed), History of Programming Languages. Aca-
demic Press, New York.

[5] Rutishauser, H. (1963) The Use of Recursive Procedures in ALGOL60. Good-
man, R. (ed), Annual Review in Automatic Programming 3. Pergamon
Press, New York.

[6] Backus, J.W. et al. (1960) Report on the algorithmic language ALGOL60.
Naur, P. (ed). CACM 3:5, 299-314.

[7] Hoare, C.A.R. (1961) Algorithm 64: Quicksort. CACM, 4:7, 321.

[8] Hoare, C.A.R. (1981) The Emperor’s Old Clothes. CACM, 24:2, 143-161.

[9] Grau, A.A. (1961) Recursive processes and ALGOL translation. CACM, 4:1,
10-15.

[10] Irons, E.T. (1961) A syntax directed compiler for ALGOL60. CACM, 4:1,
51-55.

[11] Randell, B. and Russell, L.J. (1964) ALGOL60 Implementation: The Trans-
lation and Use of ALGOL60 Programs on a Computer. Academic Press, Lon-
don.

[12] Strachey, C. and Wilkes, M.V. (1961) Some proposals for improving the ef-
ficiency of ALGOL60. (University Mathematical Laboratory Technical Mem-
orandum No. 61/5.) Also in CACM, 4:11, 488-491.

[13] Report MR 34. Dijkstra, E.W. (1961) On the Design of Machine Indepen-
dent Programming Languages. Mathematisch Centrum, Amsterdam.

[14] Dijkstra, E.W. (1963) On the Design of Machine Independent Programming
Languages. Goodman, R. (ed), Annual Review in Automatic Programming
3. Pergamon Press, New York.

[15] Samelson, K. and Bauer, F. (1962) The ALCOR project. Symbolic lan-
guages in data processing, Rome, March, 207-218. Gordon and Breach Sci-
ence Publishers, New York and London.

[16] Jensen, J. Mondrup, P. and Naur, P. (1961) A Storage Alllocation Scheme
for ALGOL60. CACM, 441-445.

[17] Bachelor, G.A. and Knuth, D.E. et al. (eds) (1961) SMALGOL-61. CACM,
4:11, 499-502.

[18] Naur, P. (1963) Compiler Construction and Data Processing. BIT, 3:2,
124-140 and 3:3, 145-166. Also available in Naur, P. (1992) Computing: A
Human Activity. ACM Press, Addison-Wesley Publishing Company, New
York.

29

[19] Dijkstra, E.W. (1960) Recursive Programming. Num. Mathematik, 2, 312-
318.

[20] Rosen, S. (ed) (1967) Programming Systems and Languages. McGraw Hill,
New York.

[21] McGowan, C.L. (1972) The “most-recent”-error: its causes and correction.
Proc. ACM Conf. on Proving assertions about programs, SIGPLAN No-
tices, 7:1, 191-202.

[22] Stoyan, H. (1984) Early LISP History (1956–1959). LFP’84 Proceedings of
the 1984 ACM Symposium on LISP and Functional Programming, Austin,
5-8 August, 299-310. ACM.

[23] Alberts, G. and de Beer, H.T. (2008) De AERA. Gedroomde machines en de
praktijk van het rekenwerk aan het Mathematisch Centrum te Amsterdam.
Studium, 2, 101-127.

[24] (2008) School of Mathematics and Statistics University of St.
Andrews, Scotland. JOC/EFR Copyright, http://www-history.mcs.st-
andrews.ac.uk/Biographies/Rutishauser.html

[25] (1954) Symposium on Automatic Programming for Digital Computers,
Washington D.C., 13-14 May. Office of Naval Research, Department of
the Navy.

[26] Gorn, S. (1954) Planning Universal Semi-Automatic Coding. Symposium
on Automatic Programming for Digital Computers, Washington, D.C., 13-
14 May, pp. 74-83. Office of Naval Research, Department of the Navy.

[27] Brown, J., Carr III, J. (1954) Automatic Programming and its Develop-
ment on the MIDAC. Symposium on Automatic Programming for Digital
Computers, Washington, D.C., 13-14 May, pp. 84-97. Office of Naval Re-
search, Department of the Navy.

[28] Backus, J.W., Herrick, H. (1954) IBM 701 Speedcoding and Other
Automatic-Programming Systems. Symposium on Automatic Program-
ming for Digital Computers, Washington, D.C., 13-14 May, pp. 106-113.
Navy Advisory Math. Panel, Office of Naval Research, Department of the
Navy.

[29] Sammet, J.E. (1969) Programming Languages: History and Fundamentals.
Prentice Hall.

[30] Backus, J.W. (1959) The syntax and semantics of the proposed interna-
tional algebraic language of the Zürich ACM-GAMM Conference. IFIP,
Paris, 120-125. UNESCO, Paris.

[31] Backus, J.W. (1980) Programming in America in the 1950s – Some Personal
Impressions. In Metropolis, N., Howlett, J. and Rota, G-C. (eds), A History
of Computing in the twentieth century. Academic Press, Orlando.

30

[32] Knuth, D.E. (1964) Backus Normal Form vs. Backus Naur Form. Letters
to the Editor of the CACM, 7:12, 735-736.

[33] Perlis, A.J. and Samelson, K. (1958) Preliminary Report: International
Algebraic Language. CACM, 1:12.

[34] (1954) IBM, Programming Research Group, ‘Preliminary Report – Spe-
cifications for the IBM Mathematical FORmula TRANslating System
FORTRAN’. Technical Report IBM, New York.

[35] de Beer, H.T. (2006) The History of the ALGOL Effort. Masters Thesis,
Tech. Univ. Eindhoven, Department of Mathematics and Computer Sci-
ence. http://heerdebeer.org/ALGOL

[36] Newell, A. and Shaw, J.C. (1957) Programming the logic theory machine.
Proc. Western Joint Computer Conf., Los Angeles, 26-28 February, pp.
230-240. ACM, New York.

[37] Newell, A. Shaw, J.C. and Simon, H.A. (1957) Empirical Explorations
of the Logic Theory Machine: A Case Study in Heuristic. Proc. Western
Joint Computer Conf., Los Angeles, 26-28 February, pp. 218-230. ACM,
New York.

[38] Shasha, D. and Lazere, C. (1998) Out of their minds: The Lives and Discov-
eries of 15 Great Computer Scientists. Copernicus, Springer-Verlag, New
York.

[39] McCarthy, J. (1981) History of LISP. And the transcripts of: presentation,
discussant’s remark, question and answer session. In Wexelblat, R.L. (ed),
History of Programming Languages. Academic Press, New York.

[40] Aspray, W. (1986) International Diffusion of Computer Technology, 1945–
1955. IEEE Annals of the History of Computing, 8, 4.

[41] Nofre, D. (2010) Unraveling Algol: US, Europe, and the Creation of a
Programming Language. IEEE Annals of the History of Computing, 32:2,
58-68.

[42] Perlis, A.J. (1981) The American side of the last phase of the development
of ALGOL. In Wexelblat, R.L. (ed), History of Programming Languages.
Academic Press, New York.

[43] Knuth, D.E. (1962) A History of Writing Compilers. Computers and Au-
tomation, 11:12, 8-18. Reprinted in: Knuth, D.E. (2003) Selected Papers on
Computer Languages. Center for the Study of Languages and Information,
Leland Stanford Junior University.

[44] Slater, R. (1989) Portraits in Silicon. MIT Press, Boston.

[45] McCarthy, J. (1959) On Conditional Expressions and Recursive Functions
(Letter). CACM, 2:8, 2-3.

31

[46] Dijkstra, E.W. (1980) A Programmer’s Early Memories. In Metropolis, N.,
Howlett, J. and Rota, G-C. (eds), A History of Computing in the twentieth
century. Academic Press, New York.

[47] Dijkstra, E.W. (1963) Making a Translator for ALGOL60. In Goodman, R.
(ed), Annual Review in Automatic Programming 3. Pergamon Press, New
York.

[48] Dijkstra, E.W. (1962) Unifying Concepts of Serial Program Execution. Pro-
ceedings of the Symposium Symbolic Languages in Data Processing, Rome,
26-31 March, pp. 236-251. Gordon and Breach Science Publishers, New
York and London.

[49] LaForest, C.E. (2007) Second-Generation Stack Computer Architecture.
Thesis for Bachelor of Independent Studies, University of Waterloo,
Canada.

[50] Bauer, F.L., Samelson, K. (1959) Sequentielle Formelübersetzung. Elek-
tronische Rechenanlagen, 1, 176-182. Also published in English as: (1960)
Sequential formula translation. CACM, 3, 76-83.

[51] In Memoriam: Edsger W. Dijkstra (1930–2002). Available from:
http://userweb.cs.utexas.edu/users/EWD/MemRes(A4).pdf

[52] van den Hove, G. (2009) Edsger Wybe Dijkstra: First Years in the Com-
puting Science (1951-1968). Masters thesis, University of Namur.

[53] (1960) The Allocation of Storage for Arrays in ALGOL60. Internal progress
report, Office of Computer Research and Education, University of Penn-
sylvania. Also in: Sattley, K. and Ingerman, P.Z. (1961) The Allocation of
Storage for Arrays in ALGOL60. CACM, 4:1, 60-65.

[54] Irons, E.T. and Feurzeig, W. (1960) Comments on the Implementation of
Recursive Procedures and Blocks in ALGOL60. ALGOL Bull. Sup, 13.2, 1-15.

[55] Carpenter, B.E. and Doran, R.W. (1977) The Other Turing Machine. Com-
puter Journal, 20, 269-279.

[56] Davis, M. (2000) Engines of Logic: Mathematicians and the origins of the
Computer. W.W. Norton & Company, New York.

[57] Bauer, F.L. (2002) My years with Rutishauser. LATSIS Symposium, ETH
Zürich.

[58] Bauer, F.L. (2002) From the Stack Principle to ALGOL. In Broy, M. and
Denert, E. (eds), Software pioneers: contributions to software engineering.
Springer, Berlin.

[59] Waldburger, H. (1960) Gebrauchsanleitung für die ERMETH, of the Insti-
tut für Angewandte Mathematik der ETH, Zürich.

32

[60] Floyd, R.W. (1961) An Algorithm for Coding Efficient Arithmetic Opera-
tions. CACM, 4:1, 42-51.

[61] Arden, B.W., Galler, B.A. and Graham, R.M. (1961) The Internal Orga-
nization of the MAD Translator. CACM, 4:1, 28-31.

[62] Dijkstra, E.W. (1962) EWD28: Substitution Processes (Preliminary Publi-
cation). I.e., a preliminary draft of [48].

[63] Dijkstra, E.W. (1963) An ALGOL60 Translator for the X1, in: Goodman, R.
(ed.), Annual Review in Automatic Programming 3. Pergamon Press, New
York.

[64] Randell, B. and Russell, L.J. (1962) Discussions on ALGOL Transla-
tion, at Mathematisch Centrum, W/AT 841, Atomic Power Division,
English Electric Co., –a record of discussions with Dr. E. W. Dijk-
stra, at Mathematisch Centrum, Amsterdam, during 4–8 Dec., 1961.
http://www.cs.ncl.ac.uk/publications/trnn/papers/34.pdf

[65] (1962) Panel on Techniques for Processor Construction. Information Pro-
cessing 1962 –Proceedings of IFIP Congress 1962, Rome, March, pp. 524-
531. Gordon and Breach Science Publishers, New York and London.

[66] No. CS-TR-1190, Randell, B. (2010) Reminiscences of Whetstone ALGOL.
Technical Report Series, Newcastle University.

[67] Naur, P. (1981) Aad van Wijngaarden’s Contribution to ALGOL60. In de
Bakker and van Vliet (eds), Algorithmic Languages. Amsterdam: North-
Holland. See also: Naur, P. (1992) Aad van Wijngaarden’s Contribution to
ALGOL60. In Wegner, P. (ed), Computing: A Human Activity. ACM Press,
Addison-Wesley Pub. Company.

[68] Naur, P. (1968) Successes and Failures of the Algol Effort. ALGOL-Bulletin,
28, 58-62. See also: Naur, P. (1992) Successes and Failures of the Algol
Effort. In Wegner, P. (ed), Computing: A Human Activity. ACM Press,
Addison-Wesley Pub. Company.

[69] Samelson, K. (1962) Programming Languages and their Processing. Infor-
mation Processing 1962 –Proceedings of IFIP Congress 1962, Munich, 27
August – 1 September, pp. 487-492. North-Holland.

[70] Gries, D. Paul, M. and Wiehle, H.R. (1965) Some Techniques Used in the
ALCOR ILLINOIS 7090. CACM, 10:12, 804-808.

[71] Dijkstra, E.W. (1962) Some Meditations on Advanced Programming. In-
formation Processing 1962 –Proceedings of IFIP Congress 1962, Munich,
27 August – 1 September, pp. 535-538. North-Holland.

[72] Galler, A. (1962) Remarks on Compiler Construction, p. 525 in Panel
on Techniques for Processor Construction, Information Processing 1962
–Proceedings of IFIP Congress 1962, Munich, 27 August – 1 September,
pp. 524-531. North-Holland.

33

[73] Gallie, T. (1962) Techniques for Processor Construction, pp. 526-527 in
Panel on Techniques for Processor Construction, Information Processing
1962 –Proceedings of IFIP Congress 1962, Munich, 27 August – 1 Septem-
ber, pp. 524-531. North-Holland.

[74] Randell, B. (1964) Whetstone ALGOL Revisited, or Confessions of a Com-
piler Writer. APIC BulletinIssue 21, Brighton, 20 May, Automatic Pro-
gramming Information Centre, College of Technology, Brighton.

[75] Ingerman, P.Z. (1961) Thunks: a way of compiling procedure statements
with some comments on procedure declarations. CACM, 4:1, 55-58.

[76] Campbell-Kelly, M., Aspray, W. (1996) Computer: A History of the Infor-
mation Machine. Basic Books, New York.

[77] Campbell-Kelly, M. (2003) From Airline Reservations to Sonic the Hedge-
hog: A History of the Software Industry. MIT Press, Boston.

[78] Ceruzzi, P.E. (2003) A History of Modern Computing. MIT Press, Boston.

[79] Mahoney, M.S. (2005) The histories of computing(s). Interdisciplinary Sci-
ence Reviews, 30:2, 119-135.

[80] Metropolis, N. Howlett, J. and Rota, G-C. (1980) A History of Computing
in the Twentieth Century. Academic Press, New York.

[81] Knuth, D.E. (1977) The Early Development of Programming Languages.
Encyclopedia of Computer Science and Technology, 7, 419-493. See also:
Knuth, D.E. (2003) The Early Development of Programming Languages. In
Knuth, D.E. (eds), Selected Papers on Computer Languages. Center for the
Study of Languages and Information Leland Stanford Junior University.

[82] Priestley, P.M. (2008) Logic and the Development of Programming Lang-
uages, 1930-1975. University College London, PhD thesis.

[83] Wegner, P. (1976) Programming Languages – The First 25 Years. IEEE
Transactions on Computers, 25:12, 1207-1225.

[84] Van Oudheusden, K. –alias Daylight, E.G. (2009) The Advent of Recursion
& Logic in Computer Science. Master’s Thesis in Logic, Univ. of Amster-
dam, http://www.illc.uva.nl/Publications/ResearchReports/MoL-2009-12.text.pdf

[85] Henriksson, S. (2009) A brief history of the stack. SHOT, Pittsburgh, Oc-
tober. SIGCIS.

[86] Huskey, H.D. and Wattenburg, W.H. (1961) A Basic Compiler for Arith-
metic Expressions. CACM 4:1, 3-9.

[87] Huskey, H.D. (1961) NELIAC—A Dialect of ALGOL. CACM, 3:11, 463-
468.

34

[88] CHM Reference number: X3926.2007. Oral History of Donald Knuth –
Interviewed by E. Feigenbaum in 2007. Mountain View, California, Com-
puter History Museum.

[89] Keese, W.M. and Huskey, H.D. (1962) An Algorithm for the Translation
of Algol Statements. Information Processing 1962 –Proceedings of IFIP
Congress 1962, Munich, 27 August – 1 September, pp. 498-502. North-
Holland.

[90] Mahoney, M.S. (1996) What Makes History?. Appendix A in Bergin, T.J.
Jr., and Gibson, R.B. Jr. (eds), History of Programming Languages. ACM
Press, New York.

[91] Report MR 47, Dijkstra, E.W. (1962) Operating Experience with ALGOL60.
Mathematisch Centrum Amsterdam. See also: Dijkstra, E.W. (1962) Op-
erating Experience with ALGOL60. Computer Journal, 5:2, 125-127.

35

